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Generative models as simulators of real world

A generative model simulates how the data is generated in the real world.
“Modelling” is understood in almost every science as unveiling this generating
process by hypothesizing theories and testing these theories through
observations.

in An Introduction to Variational Autoencoders, D. Kingma and M. Welling, 2019
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A generative model simulates how the data is generated in the real world.
“Modelling” is understood in almost every science as unveiling this generating
process by hypothesizing theories and testing these theories through
observations.

in An Introduction to Variational Autoencoders, D. Kingma and M. Welling, 2019
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Generative models for science

Chemistry/Drug Data Completion
o | discovery and Compressed
e Precipitation nowcasting + Molecular docking Representations

U ®,

Biology

Climate Science

* Protein folding

| Internet texts, images, videos

Precip (mm/h)

[Skilful precipitation nowcasting using deep generative models of radar, Ravuri Suman et al., Nature, 2021]
[DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking, Corso et al., ICLR, 2023]

[Highly accurate protein structure prediction with AlphaFold, Jumper et al., Nature, 2021]

[Learning interactive real-world simulators, Yang et al., ICLR, 2024]
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Generative models in non-Euclidean
domain

SBM Planar Guacamol Moses QM9

Graph generation includes the process of modelling and generating
real graphs
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Graph generative models

* Random graph models

. Capture simple graph distribution

. Limited capacity to model complex
dependencies

. Only capable of modelling a few statistical
properties of graphs

* Deep generative models

. Learn generative models
directly from an observed set

o o sron | G

. Can model highly complex
structures such as proteins
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Today’s lecture

e Quick introduction into traditional network models

* Introduction to deep probabilistic generative models
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Erdos-Rényi model (1960)

Alfréd Rényi

Pal Erdés =&
| (1921-1970)

(1913-1996)

G(N, L) model: N labeled
nodes are connected with L
randomly placed links.

e Gilbert's G(N,p) model: a random network
model is a network where each pair of
nodes is connected with probabillity p

Example: p=1/6
N =10
(D) ~ 1.5
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Random network examples

1/6

p:

N =12

0.03

100

Z

cPL
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Number of links in a G(N,p) network

* Probability for the N-node network to have L links (binomial distribution):

N(N-—1) . Nv-1 g
mz( 2 >p (1—p) 2

* Expected number of links in the random graph

N(N-—-1)
- N(N —1
L= Y Ip=p
L=0
* Average degree (k) = 2(L) =p(N — 1)
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Number of links in a G(N,p) network

* Probability for the N-node network to have L links (binomial distribution):

(/ N(N=1) \
_ N(N—-1)
pL=< 2 >pL(1—p) =

o J

Number of ways to place L links

* Expected number of links in the random graph

N(N-—-1)
- N(N —1
L= Y I =p
L=0
* Average degree (k) = 2(L) =p(N — 1)
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Number of links in a G(N,p) network

* Probability for the N-node network to have L links (binomial distribution):

Probability to have L links

4 RYZRR
N(N 1) Ll N(N-1)
pr, = p“(l—p)~ 2
\_ DAY

Number of ways to place L links

* Expected number of links in the random graph

N(N-—-1)
- N(N —1
L= Y I =p
L=0
* Average degree (k) = 2(L) =p(N — 1)
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Number of links in a G(N,p) network

* Probability for the N-node network to have L links (binomial distribution):

Probability to have L links

- ~ N\ ~
N(N 1) . NON-n)

pr = p (1l —p) 2
L DN y

Number of ways to place L links  Probability that other attempts did not result in a link

* Expected number of links in the random graph

= N(N —1
L= Y I =p
L=0
2 (L
e Average degree (k) = % =p(N —1)
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Number of links in a G(N,p) network

* Probability for the N-node network to have L links (binomial distribution):

Probability to have L links

- ~ N\ ~
N(N 1) . NON-n)

pr = p (1l —p) 2
L DN y

Number of ways to place L links  Probability that other attempts did not result in a link

* Expected number of links in the random graph

N(N-—-1) 4 )
2
N(N — 1)
(Ly= >  LpL=p 5
L=0 o J
Maximum number of links
2 (L
* Average degree (k) = % =p(N — 1)
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Number of links in a G(N,p) network

* Probability for the N-node network to have L links (binomial distribution):

Probability to have L links

- ~ N\ ~
N(N 1) . NON-n)

pr = p (1l —p) 2
L DN y

Number of ways to place L links  Probability that other attempts did not result in a link

* Expected number of links in the random graph

N(N-—-1) 4 )
2
N(N —1)
(Ly= >  LpL=p 5
L=0 N J
Maximum number of links
2 (L)
o - — = —
Average degree <k> N (N 1) Maximum number of links for one node
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Degree distribution in G(N,p)

e Degree distribution for a random network (binomial distribution)

N -1 L
pk=< . )pk(l—p)N ok

* Degree distribution for (k) < N (sparse networks) is approximated
by the one of the Poisson distribution

gy (B)”

k' Simpler, but does not depend on N and valid
only for sparse networks!

Pk = €

From [1]
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Degree distribution in G(N,p)

e Degree distribution for a random network (binomial distribution)

4 N 1 I
pk=< " )pk(l—p)le

Probability for a random node to have k links

Number of ways to select k links

* Degree distribution for (k) < N (sparse networks) is approximated
by the one of the Poisson distribution

k
gy (K)
_ Ry AR
Pk Ll . .
. Simpler, but does not depend on N and valid
only for sparse networks!
From [1]
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The Web is not random

From [1]
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WWW: degree dlstrlbutlon

d. incoming degree distribution outgoing degree distribution
10° S BN R L) L N 10 \ o L BN B LB B
\ log Pkin ™~ —in log kzn | | log PEkout ™~ —Tout log kout
10~ . - 102 - \ 5
pkm pkout B
10~ 107 f= :
10°¢ 10 L -
10°° 107 L i
5 10°10 10710 r ak,
N 10 10' 10 10 0% 10
K

* Degrees do not follow a Poisson distribution (like random
networks) but rather a power law distribution, of the form
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Scale-free network

A scale-free network is a network whose
degree distribution follows a power law.

Discrete Formalism

Probability that a node has k links:
pr = CE™"
With normalisation constraints

» pe=1 or Cik”: 1
k=1 k=1

The parameter C becomes
1 1

C = — -
Z k_W C(V) Riemann-zeta function
k=1
k=7
Finally: Pr = )

Po can be specified separately

Continuum Formalism

Probability of node degree between k1 and k-

ko
/ p(k)dk with p(k) = Ck™"
k1

With normalisation constraints / p(k)dk =1

kmin

1

[ k=dk

kmin

Finally: | p(k) = (v — 1)k} k7

cPL
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Random vs Scale-free networks

a. POISSON

ith k links

of nodes w

Number

C.

POWER LAW

vith k links

“das w
odes v

v‘jf NC

Number

Most nodes have
the same number
of links

No highly
conne

cted nodes

inks |kJ

Number of

° Highway network

From [1]

Number of links [k

Airline network
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Universality of scale-free properties

10" F .

e e 1 0 — - in— '
Internet at the router level - o = ) _ Protein-protein
- : _ _ interaction network

107 F o
- : Lo e =
10¢ F : ® G i 1@
PEF : 1 P ‘
105 F : a) .
r - 1 103 - -
L : ] ©
10° E o =
107 k gt 1
- 1 10* - ° -
108 & <
F : o , o}
‘|O": L ol |;|||||||| ol | 107‘ ' PR B B I R :
10 10 k10 10° 10 k 10’ 10
c d.
10 T I I llllllll rq ‘|O I I I
; L km 4 » km
0" 5 ; kgu B 107 ?- e ‘ . kou 5
(e ] g §
2 b < o | » ® N
10 F ® 3 10
109 £ 1 ] w0 [ : 8 B
i P [ : 8 : | g = . .
Email network Mosree Bl 1 P L e Citation network
|8 9 [@] 1 | . -
T : - 5 N
10 F : ° . 10 i ) .
10°° 3 'Y = 10 i :
L : ] L
107 | : ‘ ol
[ : ° 4 BE o
10® - ' = a0 | .
\ : 1 ©
107‘,‘. |-_ PETIRTTTY BRI ol 1 IIIIII.I-J 10"" il 1 l:l"'“l ol e
10 10 10 10 10 10° 10' 10¢ 10 10
kin' koul in’ koul

From [1]

Dr Dorina Thanou

Prof. Pascal Frossard

Network Machine Learning - EE452
I 16

I
u
"1



Formation of Scale-Free Networks

» Many networks seem to have the same e 1,
properties, but they capture very different data :
WWW and biological cellular networks are both scale- g 3 =
free, while they are very different o | e
* Itis important to understand how networks get > ... z
formed Bed g
models explaining the properties of networks % o000 | §
» Growth and preferential attachment lead to T
properties similar to the ones of real networks * ™ :
the degree distribution of real networks is quite § o000 | é
different from the random network one & oo | =
Barabasi-Albert model, and other models 2 5 ' %
=P=L O e Dorina Thanod -
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The Barabasi-Albert Model

* The BA model generates scale-free networks
- start with my nodes, and choose links arbitrarily (with at least one link per node)

- then develop the networks with growth and preferential attachment
Growth: add a new node with m < myq links that connects to m nodes already in the network

Preferential attachment: probability that the new node connects to node i depends on II(k;) =

- after t steps, the network has N =t 4+ my nodes and mt + mg links, and a
power-law distribution

A A
,f/ - ‘-. |" / " e ‘ ~4
® .
Q
P P A o
~ b § / . -~ |I ! £ ,
iy "~:, \ _;“,r&:'_‘ .‘.
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Summary of network models

 Network models are useful to understand or generate data

Simple and tractable models (often do not describe exactly real data)

They are based on assumptions / heuristics oversimplifying the underlying
distributions of graphs

* Network models can help calculate many quantities and properties
Those can be compared to the real data
They can help develop insights about real data

* |n order to identify these properties, we need to understand how a
network would look like if it is driven entirely by a model

e |n particular, the random network model is a sort of benchmark model

Limited capacity to model complex dependencies
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Graph Generative Models

» Given the observation ¥ = {G;};, with G, ~ P, ., we aim at learning the

distribution of the observed set of graphs P,(G) such that sampled graphs looks
like the ones in the dataset [unconditional generation]

P ={G,,G,,...,G,}

X NP ) )
G e[ nfomn)— Show
' ! J
T T
TRRE
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Graph Generative Models

» Given the observation ¥ = {G;};, with G, ~ P, ., we aim at learning the

distribution of the observed set of graphs P,(G) such that sampled graphs looks
like the ones in the dataset [unconditional generation]

. pr[ G~ P, ]_. &~

How do we learn the distribution?

What are the main challenges when graphs is
the data modality?
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What will you learn

» Given the observation ¥ = {G;};, with G, ~ P, ., we aim at learning the

distribution of the observed set of graphs P,(G) such that sampled graphs looks
like the ones in the dataset [unconditional generation]

P ={G,G,,...,G,}

n

y "* <X T —'{ ? ]— P9~[ G~ P, ]—- O~ 00

—

- BT

=~

/Hgf
A probabilistic perspective of generative models Found_at|ons of
generative models
(today)

Different families of parametrised distributions and how to learn them

Main challenges for generating graphs
Deep understanding of SOTA in diffusion models
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Today’s lecture

e Quick introduction into traditional network models

* Introduction to deep probabilistic generative models
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(Probabilistic Deep) Generative Task

* Generation: Focuses on modelling the joint distribution p(z, y)

- Representing p(z,y) is usually intractable
- We can impose structure on the data (e.g., conditional independence)

* A good generative model Py can improve downstream inference

Which is the right hypothesis/dependency to impose?
We learn it from the data!
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The task of generative modelling

« Hypothesis: & is an observed finite set of samples from an underlying distribution P, .

e Goal: Approximate this data distribution from &

How: We learn P, by maximum likelihood estimation §* = arg max E..p, [log Pg(x)]

ExPivia ['Og (Pdpj(ag ))]

— EXNPdata [|0g Pdata(x)] T EXNPdata [|Og PQ(X)]

D(PdataHPQ)

i i Network Machine Learning - EE452
= P l- I Dr Dorina Thanou

Prof. Pascal Frossard 24



Types of generative models

Implicit density Explicit density —_—

Generative Models

v

Approximate density

Tractable density

!

D O 0OEEED

Better generation quality

—
—

Better density modelling

cPiL
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Autoregressive models

* The generative process is factorized

as a sequential step which

determines the next step activation conditioned on the proceeding one

i

Node ordering

 The joint distribution is factorized by the chain rule Py(X) = Hpe(x X))

e The factorized distribution is learned via MLE

i=1

arg rrllin D(Paatal||Po) = arg rrllin —Ex~p,,.. [log Po(x)] = arg max Exvr,... [log Ps(x)]
0 0 0

 The expected log-likelihood is approximated as

Ep [log Po(x ‘

Z log Py(x

x&eD
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Autoregressive models

 The generative process is factorized as a sequential step which
determines the next step activation conditioned on the proceeding one

W @“\Q

Node ordering

* The joint distribution is factorized by the chain rule  Ps(X) = Hpe(xi|X<i)
* The factorized distribution is learned via MLE =l

arg rrl;in D(Paatal||Po) = arg rrllin —Ex~p,,.. [log Po(x)] = arg max Exvr,... [log Ps(x)]
0 0 0

 The expected log-likelihood is approximated as

1 L
(EnllogPo(x)] J 1oy Do loPlx)  Belestmater
xeD
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Latent variable models

e High-dimensional variables X often arise from unknown low-
dimensional latent features z Z

e These latent variables are unobserved

 |Learning them is usually intractable

* Deep learning is used to model and infer p(X | z) X

* The joint distribution can be obtained by marginalizing over the
latent variables

p(x) =) p(x.2) = ) p(x|2)p()
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Variational autoencoders (VAESs)

l
|
' 1

Encoder Decoder
> — > 7z — —>
qs(z|%) po(x|2)

e Given Xx;, the encoder (stochastically) compresses it using Z ~ g,(z|x;)

* Given Z, the decoder reconstructs the input using py(x | Z)

 The network is trained with the following loss

L(x;0,0) = | Eq,@zxllogp(x|z;0)] —|Dki(qs(z[x)||p(2))
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Diffusion models

e Encoder: Sequential (predefined) steps with increasing level of
Gaussian noise

 Decoder: It learns to reverse that process (denoiser)

Encoder Decoder
—> —> 7z —> —>
q(z|x) po(x|z)

Forward: C.I(Xt |Xt—1)

B Add noise B
—> —> —> —>
O
vﬁw o Gy Gr 000
O a0
i <----- <----- <----- <----- i o)
1 Denoise h

Reverse: po(xt—l |Xt)
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Diffusion Models: Key components

 Two main components: noise model and denoise network
Reverse denoising process (generative)

Forward diffusion process (fixed)

q(X;_1|X¢) isnottractable! —> Learn pg(x¢—_1|X¢) ~ q(X¢—1|%¢)
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Generative adversarial networks
(GANS)

]
|
| D(E:ifw —> | True
II
Genera tor
7z —> fa(2) — Dﬁfw —| False

* Train two neural networks in a min-max game:

e (Generator: Produces fake data to fool the discriminators

e Discriminator: Learns to distinguish real data from fake

e Loss function:

Z =minmax E,_, [log(fp(X)| + E,.,, [log(1 — fp(fo(2)))]

cPL
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Node ordering

Auto-regressive models

Generator
7 —> —
fe(z)

|

X

Discriminator

fp(x)

] e

[ e |

Generative Adversarial Networks (GAN)

X

Encoder

as(zlx)

>

Decoder

po(x|2)

e

Variational AutoEncoders

Forward: Q(Xt |Xt—1)

Add noise

Go

Denoise

Gy

Reverse: Pa(xt—l |Xt)

Diffusion models

cPL
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Take home messages

* Implicit models (GANs) generate high-quality, realistic samples but are
hard to train and prone to mode collapse

 Tractable models (Autoregressive) offer exact likelihoods and
interpretability but suffer from slow sampling due to their sequential
nature; Errors are accumulated over iterations

 Approximate models (VAEs) enable stable training via a likelihood lower
bound but produce blurrier samples

* Diffusion models combine benefits of others by transforming noise into
data through a reverse process, achieving high fidelity but at the cost of
slower sampling than VAEs and GANSs; faster than autoregressive models
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