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Generative models as simulators of real world

A generative model simulates how the data is generated in the real world. 
“Modelling” is understood in almost every science as unveiling this generating 
process by hypothesizing theories and testing these theories through 
observations.


in An Introduction to Variational Autoencoders, D. Kingma and M. Welling, 2019  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Having                  models of reality
physical

chemical

biological

…

Generative 
Model

Reality ?



Generative models for science
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[Skilful precipitation nowcasting using deep generative models of radar, Ravuri Suman et al., Nature, 2021]

[DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking, Corso et al., ICLR, 2023]

[Highly accurate protein structure prediction with AlphaFold, Jumper et al., Nature, 2021]

[Learning interactive real-world simulators, Yang et al., ICLR, 2024]

Climate Science


• Precipitation nowcasting

Chemistry/Drug 
discovery


• Molecular docking

Biology


• Protein folding

Data Completion  
and Compressed 
Representations

https://www.corona-data.ch
https://www.corona-data.ch
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov


Generative models in non-Euclidean 
domain

Graph generation includes the process of modelling and generating 
real graphs  
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Graph generative models
! Random graph models


! Deep generative models 
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• Capture simple graph distribution


• Limited capacity to model complex 
dependencies 


• Only capable of modelling a few statistical 
properties of graphs

• Learn generative models 
directly from an observed set 
of graphs 


• Can model highly complex 
structures such as proteins 



Today’s lecture
! Quick introduction into traditional network models


! Introduction to deep probabilistic generative models
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Today’s lecture
! Quick introduction into traditional network models


! Introduction to deep probabilistic generative models
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Erdös-Rényi model (1960)
Pál Erdös

(1913-1996)

Alfréd Rényi

(1921-1970)

! Gilbert’s               model: a random network 
model is a network where each pair of 
nodes is connected with probability p

- Example: 

Network Machine Learning - EE452

Dr Dorina Thanou 


Prof. Pascal Frossard 8

p = 1/6

N = 10

G(N, p)

              model: N labeled 
nodes are connected with L 
randomly placed links.

G(N,L)
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hDi ⇠ 1.5



Random network examples
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From [1]

p = 1/6

N = 12

N = 100

p = 0.03



Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):


! Expected number of links in the random graph


! Average degree
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pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2
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hki = 2 hLi
N

= p(N � 1)



Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):


! Expected number of links in the random graph


! Average degree
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pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2
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pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

Probability to have L links

Probability that other attempts did not result in a link

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2

<latexit sha1_base64="0LZWLrJSeNPswywrS068A/VxxLg=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmikUXWgpuXEipYC/QKSWTZtrQzIXkjFCGPokbX8WNC0UEV/o2pu0stPVA4Of/zuHk/G4kuALL+jaWlldW19YzG9nNre2dXXNvv6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7ye8OYDk4qHwT2MItbxST/gHqcEtNU1S45gHlwOHcn7AyjjK+x4ktCkiGfgFqdknFTHmkb56ql90jVzVsGaFl4UdipyKK1a1/x0eiGNfRYAFUSptm1F0EmIBE4FG2edWLGI0CHps7aWAfGZ6iTT88b4WDs97IVSvwDw1P09kRBfqZHv6k6fwEDNs4n5H2vH4F10Eh5EMbCAzhZ5scAQ4klWuMcloyBGWhAquf4rpgOi4wGdaFaHYM+fvCgaxYJdKlh3Z7lKOY0jgw7REcojG52jCrpBNVRHFD2iZ/SK3own48V4Nz5mrUtGOnOA/pTx9QP/kaB5</latexit>

hki = 2 hLi
N

= p(N � 1)



Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):
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! Average degree
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Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):


! Expected number of links in the random graph


! Average degree
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pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

Probability to have L links

Probability that other attempts did not result in a link

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2
Maximum number of links

Maximum number of links for one node
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hki = 2 hLi
N
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Degree distribution in G(N,p)
! Degree distribution for a random network (binomial distribution)


! Degree distribution for                 (sparse networks) is approximated 
by the one of the Poisson distribution
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From [1]

pk =

✓
N � 1

k

◆
pk(1� p)N�1�k

hki ⌧ N

pk = e�hki hki
k

k! Simpler, but does not depend on N and valid 
only for sparse networks!
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! Degree distribution for a random network (binomial distribution)
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From [1]

pk =

✓
N � 1

k

◆
pk(1� p)N�1�k

Number of ways to select k links

Probability for a random node to have k links

hki ⌧ N

pk = e�hki hki
k

k! Simpler, but does not depend on N and valid 
only for sparse networks!



The Web is not random
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WWW: degree distribution

! Degrees do not follow a Poisson distribution (like random 
networks) but rather a power law distribution, of the form
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incoming degree distribution outgoing degree distribution

Fr
om

 [1
]

pk ⇠ k��

log pkin ⇠ ��in log kin log pkout ⇠ ��out log kout



Scale-free network

Probability that a node has k links:


With normalisation constraints


The parameter C becomes


Finally: 
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A scale-free network is a network whose 
degree distribution follows a power law.

pk = Ck��

1X

k=1

pk = 1 C
1X

k=1

k�� = 1

C =
1

1P
k=1

k��

=
1

⇣(�)

pk =
k��

⇣(�)

or

can be specified separatelyp0

Discrete Formalism Continuum Formalism

Probability of node degree between     and


With normalisation constraints


Finally:

p(k) = Ck��

1Z

kmin

p(k)dk = 1

C =
1

1R

kmin

k��dk
= (� � 1)k��1

min

p(k) = (� � 1)k��1
min k

��

k2Z

k1

p(k)dk

k1 k2

with

Riemann-zeta function



Random vs Scale-free networks
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Fr
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]

Highway network

Airline network



Universality of scale-free properties
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Internet at the router level Protein-protein 
interaction network

Email network Citation network

From [1]



Formation of Scale-Free Networks
! Many networks seem to have the same 

properties, but they capture very different data

- WWW and biological cellular networks are both scale-

free, while they are very different


! It is important to understand how networks get 
formed

- models explaining the properties of networks


! Growth and preferential attachment lead to 
properties similar to the ones of real networks  

- the degree distribution of real networks is quite 

different from the random network one 

- Barabási-Albert model, and other models
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http://IMDB.com


The Barabási-Albert Model
! The BA model generates scale-free networks

- start with       nodes, and choose links arbitrarily (with at least one link per node)

- then develop the networks with growth and preferential attachment


• Growth: add a new node with               links that connects to m nodes already in the network

• Preferential attachment: probability that the new node connects to node i depends on


- after t steps, the network has                     nodes and                links, and a 
power-law distribution  
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m0

m  m0

⇧(ki) =
kiP
j
kj

N = t+m0 mt+m0

Fr
om

 [1
]

N = 100000 m = 3



Summary of network models
! Network models are useful to understand or generate data

- Simple and tractable models (often do not describe exactly real data)

- They are based on assumptions / heuristics oversimplifying the underlying 

distributions of graphs


! Network models can help calculate many quantities and properties 

- Those can be compared to the real data

- They can help develop insights about real data


! In order to identify these properties, we need to understand how a 
network would look like if it is driven entirely by a model


! In particular, the random network model is a sort of benchmark model
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Limited capacity to model complex dependencies 




Graph Generative Models 
! Given the observation , with  , we aim at learning the 

distribution of the observed set of graphs  such that sampled graphs looks 
like the ones in the dataset [unconditional generation]

𝒟 = {Gi}i Gi ∼ Pdata
Pθ(G)

20

Network Machine Learning - EE452

Dr Dorina Thanou 


Prof. Pascal Frossard



Graph Generative Models 
! Given the observation , with  , we aim at learning the 

distribution of the observed set of graphs  such that sampled graphs looks 
like the ones in the dataset [unconditional generation]

𝒟 = {Gi}i Gi ∼ Pdata
Pθ(G)
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How do we learn the distribution? 


What are the main challenges when graphs is 
the data modality?



What will you learn
! Given the observation , with  , we aim at learning the 

distribution of the observed set of graphs  such that sampled graphs looks 
like the ones in the dataset [unconditional generation]

𝒟 = {Gi}i Gi ∼ Pdata
Pθ(G)

21
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A probabilistic perspective of generative models 

Different families of parametrised distributions and how to learn them

Main challenges for generating graphs 

Deep understanding of SOTA in diffusion models

Foundations of 
generative models


(today)

Specific to graphs

(next week)



Today’s lecture
! Quick introduction into traditional network models


! Introduction to deep probabilistic generative models
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(Probabilistic Deep) Generative Task

! Generation: Focuses on modelling the joint distribution

- Representing             is usually intractable 

- We can impose structure on the data (e.g., conditional independence)


! A good generative model     can improve downstream inference

23
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P✓

Which is the right hypothesis/dependency to impose? 

We learn it from the data!



The task of generative modelling 
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• Hypothesis:  is an observed finite set of samples from an underlying distribution 


• Goal: Approximate this data distribution from   


• How: We learn  by maximum likelihood estimation   

𝒟 Pdata

𝒟

Pθ θ⋆ = arg max
Pθ

𝔼x∼Pdata [log Pθ(x)]
From KL-Divergence to Log-Likelihood

We can simplify this somewhat:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�

= Ex⇠Pdata [logPdata(x)]� Ex⇠Pdata [logP✓(x)]

The first term does not depend on P✓.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
P✓

D(Pdata||P✓) = argmin
P✓

�Ex⇠Pdata [logP✓(x)] = argmax
P✓

Ex⇠Pdata [logP✓(x)]

Asks that P✓ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where P✓(x) ⇡ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 12 / 31
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Generative Models

Given a data sample x, a discrimi-

native model aims at predicting its
label y, hence it models the condi-
tional distribution p(y|x). Genera-
tive models instead model the dis-
tribution p(x) defined over the data-
points x. Generative models models
can be di↵erentiated into two cate-
gories: explicit or implicit. In the
former case, we explicitly model the
probability distribution of the data,
in the latter we aim at generating
samples according to it.

Taxonomy. The following figure
depicts the taxonomy of the existing
generative methods:

2

Better density modelling 

Better generation quality 



Autoregressive models
! The generative process is factorized as a sequential step which 

determines the next step activation conditioned on the proceeding one


! The joint distribution is factorized by the chain rule

!  The factorized distribution is learned via MLE



! The expected log-likelihood is approximated as 

From KL-Divergence to Log-Likelihood

We can simplify this somewhat:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�

= Ex⇠Pdata [logPdata(x)]� Ex⇠Pdata [logP✓(x)]

The first term does not depend on P✓.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
P✓

D(Pdata||P✓) = argmin
P✓

�Ex⇠Pdata [logP✓(x)] = argmax
P✓

Ex⇠Pdata [logP✓(x)]

Asks that P✓ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where P✓(x) ⇡ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.
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pθ(x) =
n

∏
i=1

pθ(xi |x<i)

A Survey on Deep Graph Generation: Methods and Applications

(4) Generative adversarial networks

Fake

Training 
set

Generator

Real
Discriminator
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(3) Normalizing flows
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Figure 2: A summary of graph generative models for deep graph generation, including (1) auto-
regressive models, (2) variational autoencoders, (3) normalizing flows, (4) generative adversarial
networks, and (5) diffusion models.

• Graph structure learning [22, 23] simultaneously learns an optimized graph structure along
with representations for downstream tasks. Unlike graph generation that aims to generate new
graphs, the purpose of graph structure learning is to improve the given noisy or incomplete
graphs.

• Generative sampling [24, 25, 26] learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets such as
citation networks, graph generative sampling could serve as an alternative approach to generate
large-scale graphs by sampling subgraphs from a large graph and reconstructing a new graph.

• Set generation [27, 28] seeks to generate set objects, such as point clouds or 3D molecules,
which is similar to graph generation in that graphs are also set objects. In this survey, we only
focus on graph generation whose objective concerns with generation of both the nodes and edges
matrices, whereas set generation typically does not consider edge features. Nevertheless, we
recognize that several set generation methods share significant similarities with graph generation.

3 Algorithm Taxonomy

For deep graph generation, we present an encoder–sampler–decoder pipeline, as shown in Figure 1,
to characterize most existing graph generative models in a unified framework. Here, the observed
graphs are first mapped into a stochastic low-dimensional latent space, with latent representations
following a stochastic distribution. A random sample is drawn from that distribution and then passed
through a decoder to restore graph structures, which are typically represented in an adjacency matrix
as well as feature matrices. Under this framework, we organize various methods around three key
components:

The encoder. The encoding function f⇥(z | G) represent discrete graph objects as dense, continu-
ous vectors. To ensure the learned latent space is meaningful for generation, we employ probabilistic
generative models (e.g., variational graph neural networks) as the encoder. Formally, the encoder
function f⇥ outputs the parameters of a stochastic distribution following a prior distribution p(z).

The sampler. Consequently, the graph generation model samples latent representations from the
learned distribution z ⇠ p(z). In graph generation, there are two sampling strategies: random
sampling and controllable sampling. Random sampling refers to randomly sampling latent codes
from the learned distribution. It is also called distribution learning in some literature [29]. In contrast,
controllable sampling aims to sample the latent code in an ultimate attempt to generate new graphs
with desired properties. In practice, controllable sampling usually depends on different types of deep
generative models and requires an additional optimization term beyond random generation.

The decoder. After receiving the latent representations sampled from the learned distribution, the
decoder restores them to graph structures. Compared to the encoder, the decoder involved in the

3

Empirical Maximum Likelihood

We can now use Monte Carlo to derive a practical learning objective:

We approximate the expected log-likelihood

Ex⇠Pdata [logP✓(x)]

with the empirical log-likelihood:

ED [logP✓(x)] =
1

|D|
X

x2D
logP✓(x)

Maximum likelihood learning is then:

max
P✓

1

|D|
X

x2D
logP✓(x)

Equivalently, we maximize probability of the data under model
P✓(x(1), · · · , x(m)) =

Q
x2D P✓(x)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 16 / 31



Autoregressive models
! The generative process is factorized as a sequential step which 

determines the next step activation conditioned on the proceeding one


! The joint distribution is factorized by the chain rule

!  The factorized distribution is learned via MLE



! The expected log-likelihood is approximated as 

From KL-Divergence to Log-Likelihood

We can simplify this somewhat:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�

= Ex⇠Pdata [logPdata(x)]� Ex⇠Pdata [logP✓(x)]

The first term does not depend on P✓.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
P✓

D(Pdata||P✓) = argmin
P✓

�Ex⇠Pdata [logP✓(x)] = argmax
P✓

Ex⇠Pdata [logP✓(x)]

Asks that P✓ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where P✓(x) ⇡ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 12 / 31
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pθ(x) =
n

∏
i=1

pθ(xi |x<i)

A Survey on Deep Graph Generation: Methods and Applications

(4) Generative adversarial networks

Fake

Training 
set

Generator
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(3) Normalizing flows
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Figure 2: A summary of graph generative models for deep graph generation, including (1) auto-
regressive models, (2) variational autoencoders, (3) normalizing flows, (4) generative adversarial
networks, and (5) diffusion models.

• Graph structure learning [22, 23] simultaneously learns an optimized graph structure along
with representations for downstream tasks. Unlike graph generation that aims to generate new
graphs, the purpose of graph structure learning is to improve the given noisy or incomplete
graphs.

• Generative sampling [24, 25, 26] learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets such as
citation networks, graph generative sampling could serve as an alternative approach to generate
large-scale graphs by sampling subgraphs from a large graph and reconstructing a new graph.

• Set generation [27, 28] seeks to generate set objects, such as point clouds or 3D molecules,
which is similar to graph generation in that graphs are also set objects. In this survey, we only
focus on graph generation whose objective concerns with generation of both the nodes and edges
matrices, whereas set generation typically does not consider edge features. Nevertheless, we
recognize that several set generation methods share significant similarities with graph generation.

3 Algorithm Taxonomy

For deep graph generation, we present an encoder–sampler–decoder pipeline, as shown in Figure 1,
to characterize most existing graph generative models in a unified framework. Here, the observed
graphs are first mapped into a stochastic low-dimensional latent space, with latent representations
following a stochastic distribution. A random sample is drawn from that distribution and then passed
through a decoder to restore graph structures, which are typically represented in an adjacency matrix
as well as feature matrices. Under this framework, we organize various methods around three key
components:

The encoder. The encoding function f⇥(z | G) represent discrete graph objects as dense, continu-
ous vectors. To ensure the learned latent space is meaningful for generation, we employ probabilistic
generative models (e.g., variational graph neural networks) as the encoder. Formally, the encoder
function f⇥ outputs the parameters of a stochastic distribution following a prior distribution p(z).

The sampler. Consequently, the graph generation model samples latent representations from the
learned distribution z ⇠ p(z). In graph generation, there are two sampling strategies: random
sampling and controllable sampling. Random sampling refers to randomly sampling latent codes
from the learned distribution. It is also called distribution learning in some literature [29]. In contrast,
controllable sampling aims to sample the latent code in an ultimate attempt to generate new graphs
with desired properties. In practice, controllable sampling usually depends on different types of deep
generative models and requires an additional optimization term beyond random generation.

The decoder. After receiving the latent representations sampled from the learned distribution, the
decoder restores them to graph structures. Compared to the encoder, the decoder involved in the

3

Empirical Maximum Likelihood

We can now use Monte Carlo to derive a practical learning objective:

We approximate the expected log-likelihood

Ex⇠Pdata [logP✓(x)]

with the empirical log-likelihood:

ED [logP✓(x)] =
1

|D|
X

x2D
logP✓(x)

Maximum likelihood learning is then:

max
P✓

1

|D|
X

x2D
logP✓(x)

Equivalently, we maximize probability of the data under model
P✓(x(1), · · · , x(m)) =

Q
x2D P✓(x)
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Latent variable models
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• High-dimensional variables  often arise from unknown low-
dimensional latent features  


• These latent variables are unobserved 


• Learning them is usually intractable


• Deep learning is used to model and infer 

x
z

p(x |z)

• The joint distribution can be obtained by marginalizing over the 
latent variables


                      
p(x) = ∑
z

p(x, z) = ∑
z

p(x |z)p(z)

Latent Variable Models: Definition

A latent variable model defines a probability distribution

p(x , z) = p(x |z)p(z)

containing two sets of variables:

1 Observed variables x that represent the high-dimensional objects we
are trying to model and that are in our training set.

2 Latent variables z that are not in the dataset, but that are associated
with x as specified by p(x, z). We will learn z and p(x, z) jointly.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 6 4 / 33

prior on the latent variable 
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• Given , the encoder (stochastically) compresses it using 


• Given , the decoder reconstructs the input using 


• The network is trained with the following loss


 

xi ̂z ∼ qθ(z |xi)

̂z pθ(x | ̂z)

Autoencoder Perspective

L(x; ✓,�) = Eq�(z|x)[log p(z, x; ✓)� log q�(z|x))]
= Eq�(z|x)[log p(z, x; ✓)� log p(z) + log p(z)� log q�(z|x))]
= Eq�(z|x)[log p(x|z; ✓)]� DKL(q�(z|x)kp(z))

1 Take a data point xi

2 Map it to ẑ by sampling from q�(z|xi ) (encoder)
3 Reconstruct x̂ by sampling from p(x|ẑ; ✓) (decoder)

What does the training objective L(x; ✓,�) do?
First term encourages x̂ ⇡ x

i (xi likely under p(x|ẑ; ✓))
Second term encourages ẑ to be likely under the prior p(z)
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good reconstruction
 enforce specific shape

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,
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Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of
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tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,
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and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,
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and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of
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tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,
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and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

ℒ = min max 𝔼x∼pdata [log( fD(x))] + 𝔼z∼p(z) [log(1 − fD( fG(z)))]

• Train two neural networks in a min-max game:


• Generator: Produces fake data to fool the discriminators


• Discriminator: Learns to distinguish real data from fake 


• Loss function:



Summary
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Figure 2: A summary of graph generative models for deep graph generation, including (1) auto-
regressive models, (2) variational autoencoders, (3) normalizing flows, (4) generative adversarial
networks, and (5) diffusion models.

• Graph structure learning [22, 23] simultaneously learns an optimized graph structure along
with representations for downstream tasks. Unlike graph generation that aims to generate new
graphs, the purpose of graph structure learning is to improve the given noisy or incomplete
graphs.

• Generative sampling [24, 25, 26] learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets such as
citation networks, graph generative sampling could serve as an alternative approach to generate
large-scale graphs by sampling subgraphs from a large graph and reconstructing a new graph.

• Set generation [27, 28] seeks to generate set objects, such as point clouds or 3D molecules,
which is similar to graph generation in that graphs are also set objects. In this survey, we only
focus on graph generation whose objective concerns with generation of both the nodes and edges
matrices, whereas set generation typically does not consider edge features. Nevertheless, we
recognize that several set generation methods share significant similarities with graph generation.

3 Algorithm Taxonomy

For deep graph generation, we present an encoder–sampler–decoder pipeline, as shown in Figure 1,
to characterize most existing graph generative models in a unified framework. Here, the observed
graphs are first mapped into a stochastic low-dimensional latent space, with latent representations
following a stochastic distribution. A random sample is drawn from that distribution and then passed
through a decoder to restore graph structures, which are typically represented in an adjacency matrix
as well as feature matrices. Under this framework, we organize various methods around three key
components:

The encoder. The encoding function f⇥(z | G) represent discrete graph objects as dense, continu-
ous vectors. To ensure the learned latent space is meaningful for generation, we employ probabilistic
generative models (e.g., variational graph neural networks) as the encoder. Formally, the encoder
function f⇥ outputs the parameters of a stochastic distribution following a prior distribution p(z).

The sampler. Consequently, the graph generation model samples latent representations from the
learned distribution z ⇠ p(z). In graph generation, there are two sampling strategies: random
sampling and controllable sampling. Random sampling refers to randomly sampling latent codes
from the learned distribution. It is also called distribution learning in some literature [29]. In contrast,
controllable sampling aims to sample the latent code in an ultimate attempt to generate new graphs
with desired properties. In practice, controllable sampling usually depends on different types of deep
generative models and requires an additional optimization term beyond random generation.

The decoder. After receiving the latent representations sampled from the learned distribution, the
decoder restores them to graph structures. Compared to the encoder, the decoder involved in the
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tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,
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Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,
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and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,
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Denoise Reverse: 

Forward: 

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of



Take home messages
! Implicit models (GANs) generate high-quality, realistic samples but are 

hard to train and prone to mode collapse


! Tractable models (Autoregressive) offer exact likelihoods and 
interpretability but suffer from slow sampling due to their sequential 
nature; Errors are accumulated over iterations


! Approximate models (VAEs) enable stable training via a likelihood lower 
bound but produce blurrier samples


! Diffusion models combine benefits of others by transforming noise into 
data through a reverse process, achieving high fidelity but at the cost of 
slower sampling than VAEs and GANs; faster than autoregressive models
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