
Graph generative models

Part I

Dr Dorina Thanou

May 13, 2025

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Generative models as simulators of real world

A generative model simulates how the data is generated in the real world.
“Modelling” is understood in almost every science as unveiling this generating
process by hypothesizing theories and testing these theories through
observations.

in An Introduction to Variational Autoencoders, D. Kingma and M. Welling, 2019  

 

2

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Generative
Model

Reality ?

Generative models as simulators of real world

A generative model simulates how the data is generated in the real world.
“Modelling” is understood in almost every science as unveiling this generating
process by hypothesizing theories and testing these theories through
observations.

in An Introduction to Variational Autoencoders, D. Kingma and M. Welling, 2019  

 

2

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Having models of reality
physical

chemical

biological

…

Generative
Model

Reality ?

Generative models for science

3

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

[Skilful precipitation nowcasting using deep generative models of radar, Ravuri Suman et al., Nature, 2021]

[DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking, Corso et al., ICLR, 2023]

[Highly accurate protein structure prediction with AlphaFold, Jumper et al., Nature, 2021]

[Learning interactive real-world simulators, Yang et al., ICLR, 2024]

Climate Science

• Precipitation nowcasting

Chemistry/Drug
discovery

• Molecular docking

Biology

• Protein folding

Data Completion  
and Compressed
Representations

https://www.corona-data.ch
https://www.corona-data.ch
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov

Generative models in non-Euclidean
domain

Graph generation includes the process of modelling and generating
real graphs

4

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Graph generative models
! Random graph models

! Deep generative models

5

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

• Capture simple graph distribution

• Limited capacity to model complex
dependencies

• Only capable of modelling a few statistical
properties of graphs

• Learn generative models
directly from an observed set
of graphs

• Can model highly complex
structures such as proteins

Today’s lecture
! Quick introduction into traditional network models

! Introduction to deep probabilistic generative models

6

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Today’s lecture
! Quick introduction into traditional network models

! Introduction to deep probabilistic generative models

7

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Erdös-Rényi model (1960)
Pál Erdös

(1913-1996)

Alfréd Rényi

(1921-1970)

! Gilbert’s model: a random network
model is a network where each pair of
nodes is connected with probability p

- Example:

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 8

p = 1/6

N = 10

G(N, p)

 model: N labeled
nodes are connected with L
randomly placed links.

G(N,L)

<latexit sha1_base64="+ie8oXlfo3AwNKe92yQDgxir6PU=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeQiEUPUgp68FjBfkATyma7aZduNmF3IpTSi3/FiwdFvPozvPlv3LY5aOuDgcd7M8zMC1PBNbjut1VYWV1b3yhulra2d3b37P2Dpk4yRVmDJiJR7ZBoJrhkDeAgWDtVjMShYK1weDP1W49MaZ7IBxilLIhJX/KIUwJG6tpHvmARXN/6ivcHUMW+5jH2nErXLruOOwNeJl5OyihHvWt/+b2EZjGTQAXRuuO5KQRjooBTwSYlP9MsJXRI+qxjqCQx08F49sAEnxqlh6NEmZKAZ+rviTGJtR7FoemMCQz0ojcV//M6GURXwZjLNAMm6XxRlAkMCZ6mgXtcMQpiZAihiptbMR0QRSiYzEomBG/x5WXSPHe8iuPeX5Rr1TyOIjpGJ+gMeegS1dAdqqMGomiCntErerOerBfr3fqYtxasfOYQ/YH1+QPmx5VJ</latexit>

hDi ⇠ 1.5

Random network examples

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 9

From [1]

p = 1/6

N = 12

N = 100

p = 0.03

Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):

! Expected number of links in the random graph

! Average degree

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 10

pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2

<latexit sha1_base64="0LZWLrJSeNPswywrS068A/VxxLg=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmikUXWgpuXEipYC/QKSWTZtrQzIXkjFCGPokbX8WNC0UEV/o2pu0stPVA4Of/zuHk/G4kuALL+jaWlldW19YzG9nNre2dXXNvv6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7ye8OYDk4qHwT2MItbxST/gHqcEtNU1S45gHlwOHcn7AyjjK+x4ktCkiGfgFqdknFTHmkb56ql90jVzVsGaFl4UdipyKK1a1/x0eiGNfRYAFUSptm1F0EmIBE4FG2edWLGI0CHps7aWAfGZ6iTT88b4WDs97IVSvwDw1P09kRBfqZHv6k6fwEDNs4n5H2vH4F10Eh5EMbCAzhZ5scAQ4klWuMcloyBGWhAquf4rpgOi4wGdaFaHYM+fvCgaxYJdKlh3Z7lKOY0jgw7REcojG52jCrpBNVRHFD2iZ/SK3own48V4Nz5mrUtGOnOA/pTx9QP/kaB5</latexit>

hki = 2 hLi
N

= p(N � 1)

Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):

! Expected number of links in the random graph

! Average degree

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 10

pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2

<latexit sha1_base64="0LZWLrJSeNPswywrS068A/VxxLg=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmikUXWgpuXEipYC/QKSWTZtrQzIXkjFCGPokbX8WNC0UEV/o2pu0stPVA4Of/zuHk/G4kuALL+jaWlldW19YzG9nNre2dXXNvv6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7ye8OYDk4qHwT2MItbxST/gHqcEtNU1S45gHlwOHcn7AyjjK+x4ktCkiGfgFqdknFTHmkb56ql90jVzVsGaFl4UdipyKK1a1/x0eiGNfRYAFUSptm1F0EmIBE4FG2edWLGI0CHps7aWAfGZ6iTT88b4WDs97IVSvwDw1P09kRBfqZHv6k6fwEDNs4n5H2vH4F10Eh5EMbCAzhZ5scAQ4klWuMcloyBGWhAquf4rpgOi4wGdaFaHYM+fvCgaxYJdKlh3Z7lKOY0jgw7REcojG52jCrpBNVRHFD2iZ/SK3own48V4Nz5mrUtGOnOA/pTx9QP/kaB5</latexit>

hki = 2 hLi
N

= p(N � 1)

Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):

! Expected number of links in the random graph

! Average degree

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 10

pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

Probability to have L links

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2

<latexit sha1_base64="0LZWLrJSeNPswywrS068A/VxxLg=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmikUXWgpuXEipYC/QKSWTZtrQzIXkjFCGPokbX8WNC0UEV/o2pu0stPVA4Of/zuHk/G4kuALL+jaWlldW19YzG9nNre2dXXNvv6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7ye8OYDk4qHwT2MItbxST/gHqcEtNU1S45gHlwOHcn7AyjjK+x4ktCkiGfgFqdknFTHmkb56ql90jVzVsGaFl4UdipyKK1a1/x0eiGNfRYAFUSptm1F0EmIBE4FG2edWLGI0CHps7aWAfGZ6iTT88b4WDs97IVSvwDw1P09kRBfqZHv6k6fwEDNs4n5H2vH4F10Eh5EMbCAzhZ5scAQ4klWuMcloyBGWhAquf4rpgOi4wGdaFaHYM+fvCgaxYJdKlh3Z7lKOY0jgw7REcojG52jCrpBNVRHFD2iZ/SK3own48V4Nz5mrUtGOnOA/pTx9QP/kaB5</latexit>

hki = 2 hLi
N

= p(N � 1)

Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):

! Expected number of links in the random graph

! Average degree

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 10

pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

Probability to have L links

Probability that other attempts did not result in a link

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2

<latexit sha1_base64="0LZWLrJSeNPswywrS068A/VxxLg=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmikUXWgpuXEipYC/QKSWTZtrQzIXkjFCGPokbX8WNC0UEV/o2pu0stPVA4Of/zuHk/G4kuALL+jaWlldW19YzG9nNre2dXXNvv6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7ye8OYDk4qHwT2MItbxST/gHqcEtNU1S45gHlwOHcn7AyjjK+x4ktCkiGfgFqdknFTHmkb56ql90jVzVsGaFl4UdipyKK1a1/x0eiGNfRYAFUSptm1F0EmIBE4FG2edWLGI0CHps7aWAfGZ6iTT88b4WDs97IVSvwDw1P09kRBfqZHv6k6fwEDNs4n5H2vH4F10Eh5EMbCAzhZ5scAQ4klWuMcloyBGWhAquf4rpgOi4wGdaFaHYM+fvCgaxYJdKlh3Z7lKOY0jgw7REcojG52jCrpBNVRHFD2iZ/SK3own48V4Nz5mrUtGOnOA/pTx9QP/kaB5</latexit>

hki = 2 hLi
N

= p(N � 1)

Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):

! Expected number of links in the random graph

! Average degree

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 10

pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

Probability to have L links

Probability that other attempts did not result in a link

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2
Maximum number of links

<latexit sha1_base64="0LZWLrJSeNPswywrS068A/VxxLg=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmikUXWgpuXEipYC/QKSWTZtrQzIXkjFCGPokbX8WNC0UEV/o2pu0stPVA4Of/zuHk/G4kuALL+jaWlldW19YzG9nNre2dXXNvv6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7ye8OYDk4qHwT2MItbxST/gHqcEtNU1S45gHlwOHcn7AyjjK+x4ktCkiGfgFqdknFTHmkb56ql90jVzVsGaFl4UdipyKK1a1/x0eiGNfRYAFUSptm1F0EmIBE4FG2edWLGI0CHps7aWAfGZ6iTT88b4WDs97IVSvwDw1P09kRBfqZHv6k6fwEDNs4n5H2vH4F10Eh5EMbCAzhZ5scAQ4klWuMcloyBGWhAquf4rpgOi4wGdaFaHYM+fvCgaxYJdKlh3Z7lKOY0jgw7REcojG52jCrpBNVRHFD2iZ/SK3own48V4Nz5mrUtGOnOA/pTx9QP/kaB5</latexit>

hki = 2 hLi
N

= p(N � 1)

Number of links in a G(N,p) network
! Probability for the N-node network to have L links (binomial distribution):

! Expected number of links in the random graph

! Average degree

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 10

pL =

✓
N(N�1)

2
L

◆
pL(1� p)

N(N�1)
2 �L

Number of ways to place L links

Probability to have L links

Probability that other attempts did not result in a link

hLi =

N(N�1)
2X

L=0

LpL = p
N(N � 1)

2
Maximum number of links

Maximum number of links for one node

<latexit sha1_base64="0LZWLrJSeNPswywrS068A/VxxLg=">AAACHnicbZDLSgMxFIYzXmu9jbp0EyxCXVhmikUXWgpuXEipYC/QKSWTZtrQzIXkjFCGPokbX8WNC0UEV/o2pu0stPVA4Of/zuHk/G4kuALL+jaWlldW19YzG9nNre2dXXNvv6HCWFJWp6EIZcsligkesDpwEKwVSUZ8V7CmO7ye8OYDk4qHwT2MItbxST/gHqcEtNU1S45gHlwOHcn7AyjjK+x4ktCkiGfgFqdknFTHmkb56ql90jVzVsGaFl4UdipyKK1a1/x0eiGNfRYAFUSptm1F0EmIBE4FG2edWLGI0CHps7aWAfGZ6iTT88b4WDs97IVSvwDw1P09kRBfqZHv6k6fwEDNs4n5H2vH4F10Eh5EMbCAzhZ5scAQ4klWuMcloyBGWhAquf4rpgOi4wGdaFaHYM+fvCgaxYJdKlh3Z7lKOY0jgw7REcojG52jCrpBNVRHFD2iZ/SK3own48V4Nz5mrUtGOnOA/pTx9QP/kaB5</latexit>

hki = 2 hLi
N

= p(N � 1)

Degree distribution in G(N,p)
! Degree distribution for a random network (binomial distribution)

! Degree distribution for (sparse networks) is approximated
by the one of the Poisson distribution

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 11

From [1]

pk =

✓
N � 1

k

◆
pk(1� p)N�1�k

hki ⌧ N

pk = e�hki hki
k

k! Simpler, but does not depend on N and valid
only for sparse networks!

Degree distribution in G(N,p)
! Degree distribution for a random network (binomial distribution)

! Degree distribution for (sparse networks) is approximated
by the one of the Poisson distribution

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 11

From [1]

pk =

✓
N � 1

k

◆
pk(1� p)N�1�k

Number of ways to select k links

Probability for a random node to have k links

hki ⌧ N

pk = e�hki hki
k

k! Simpler, but does not depend on N and valid
only for sparse networks!

The Web is not random

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 12

Fr
om

 [1
]

WWW: degree distribution

! Degrees do not follow a Poisson distribution (like random
networks) but rather a power law distribution, of the form

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 13

incoming degree distribution outgoing degree distribution

Fr
om

 [1
]

pk ⇠ k��

log pkin ⇠ ��in log kin log pkout ⇠ ��out log kout

Scale-free network

Probability that a node has k links:

With normalisation constraints

The parameter C becomes

Finally:

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 14

A scale-free network is a network whose
degree distribution follows a power law.

pk = Ck��

1X

k=1

pk = 1 C
1X

k=1

k�� = 1

C =
1

1P
k=1

k��

=
1

⇣(�)

pk =
k��

⇣(�)

or

can be specified separatelyp0

Discrete Formalism Continuum Formalism

Probability of node degree between and

With normalisation constraints

Finally:

p(k) = Ck��

1Z

kmin

p(k)dk = 1

C =
1

1R

kmin

k��dk
= (� � 1)k��1

min

p(k) = (� � 1)k��1
min k

��

k2Z

k1

p(k)dk

k1 k2

with

Riemann-zeta function

Random vs Scale-free networks

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 15

Fr
om

 [1
]

Highway network

Airline network

Universality of scale-free properties

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 16

Internet at the router level Protein-protein
interaction network

Email network Citation network

From [1]

Formation of Scale-Free Networks
! Many networks seem to have the same

properties, but they capture very different data

- WWW and biological cellular networks are both scale-

free, while they are very different

! It is important to understand how networks get
formed

- models explaining the properties of networks

! Growth and preferential attachment lead to
properties similar to the ones of real networks

- the degree distribution of real networks is quite

different from the random network one

- Barabási-Albert model, and other models

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 17

m
ov

ie
s

lis
te

d
in

 IM
D

B.
co

m
pa

pe
rs

 in
 P

hy
si

ca
l R

ev
ie

w
W

W
W

 h
os

ts

http://IMDB.com
http://IMDB.com

The Barabási-Albert Model
! The BA model generates scale-free networks

- start with nodes, and choose links arbitrarily (with at least one link per node)

- then develop the networks with growth and preferential attachment

• Growth: add a new node with links that connects to m nodes already in the network

• Preferential attachment: probability that the new node connects to node i depends on

- after t steps, the network has nodes and links, and a
power-law distribution

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 18

m0

m  m0

⇧(ki) =
kiP
j
kj

N = t+m0 mt+m0

Fr
om

 [1
]

N = 100000 m = 3

Summary of network models
! Network models are useful to understand or generate data

- Simple and tractable models (often do not describe exactly real data)

- They are based on assumptions / heuristics oversimplifying the underlying

distributions of graphs

! Network models can help calculate many quantities and properties

- Those can be compared to the real data

- They can help develop insights about real data

! In order to identify these properties, we need to understand how a
network would look like if it is driven entirely by a model

! In particular, the random network model is a sort of benchmark model

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard 19

Limited capacity to model complex dependencies

Graph Generative Models
! Given the observation , with , we aim at learning the

distribution of the observed set of graphs such that sampled graphs looks
like the ones in the dataset [unconditional generation]

𝒟 = {Gi}i Gi ∼ Pdata
Pθ(G)

20

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Graph Generative Models
! Given the observation , with , we aim at learning the

distribution of the observed set of graphs such that sampled graphs looks
like the ones in the dataset [unconditional generation]

𝒟 = {Gi}i Gi ∼ Pdata
Pθ(G)

20

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

How do we learn the distribution?

What are the main challenges when graphs is
the data modality?

What will you learn
! Given the observation , with , we aim at learning the

distribution of the observed set of graphs such that sampled graphs looks
like the ones in the dataset [unconditional generation]

𝒟 = {Gi}i Gi ∼ Pdata
Pθ(G)

21

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

A probabilistic perspective of generative models

Different families of parametrised distributions and how to learn them

Main challenges for generating graphs

Deep understanding of SOTA in diffusion models

Foundations of
generative models

(today)

Specific to graphs

(next week)

Today’s lecture
! Quick introduction into traditional network models

! Introduction to deep probabilistic generative models

22

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

(Probabilistic Deep) Generative Task

! Generation: Focuses on modelling the joint distribution

- Representing is usually intractable

- We can impose structure on the data (e.g., conditional independence)

! A good generative model can improve downstream inference

23

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

<latexit sha1_base64="cJ7HfO3aI5sUJXkkJDUEKJva/oU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdUfQkBS8eK9gPaJeSTbNtbDZZkqy4LP0PXjwo4tX/481/Y9ruQasPBh7vzTAzL4g508Z1v5zC0vLK6lpxvbSxubW9U97da2mZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H4+up336gSjMp7kwaUz/CQ8FCRrCxUiuuPp6kx/1yxa25M6C/xMtJBXI0+uXP3kCSJKLCEI617npubPwMK8MIp5NSL9E0xmSMh7RrqcAR1X42u3aCjqwyQKFUtoRBM/XnRIYjrdMosJ0RNiO96E3F/7xuYsJLP2MiTgwVZL4oTDgyEk1fRwOmKDE8tQQTxeytiIywwsTYgEo2BG/x5b+kdVrzzmvu7VmlfpXHUYQDOIQqeHABdbiBBjSBwD08wQu8OtJ5dt6c93lrwcln9uEXnI9vwq2OlA==</latexit>

p(x, y)
<latexit sha1_base64="p6CRTg3tWR1JNYRKohmWhsNGDuk=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJUkLIrij0WvHisYD+gXUo2zbax2WRJsuKy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcyZNq777aysrq1vbBa2its7u3v7pYPDlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvpn67UeqNJPi3qQx9SM8FCxkBBsrteLK03l61i+V3ao7A1omXk7KkKPRL331BpIkERWGcKx113Nj42dYGUY4nRR7iaYxJmM8pF1LBY6o9rPZtRN0apUBCqWyJQyaqb8nMhxpnUaB7YywGelFbyr+53UTE9b8jIk4MVSQ+aIw4chINH0dDZiixPDUEkwUs7ciMsIKE2MDKtoQvMWXl0nroupdVd27y3K9lsdRgGM4gQp4cA11uIUGNIHAAzzDK7w50nlx3p2PeeuKk88cwR84nz/A346O</latexit>

p(x, y)

<latexit sha1_base64="MeHdACwh46C/RJOwsvipQmvfa+o=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6EkKXjxWsLXYhrLZTtulm03YnQgl9F948aCIV/+NN/+N2zYHbX0w8Hhvhpl5YSKFIc/7dgorq2vrG8XN0tb2zu5eef+gaeJUc2zwWMa6FTKDUihskCCJrUQji0KJD+HoZuo/PKE2Ilb3NE4wiNhAib7gjKz0WO9mHRoisUm3XPGq3gzuMvFzUoEc9W75q9OLeRqhIi6ZMW3fSyjImCbBJU5KndRgwviIDbBtqWIRmiCbXTxxT6zSc/uxtqXInam/JzIWGTOOQtsZMRqaRW8q/ue1U+pfBZlQSUqo+HxRP5Uuxe70fbcnNHKSY0sY18Le6vIh04yTDalkQ/AXX14mzbOqf1H17s4rtes8jiIcwTGcgg+XUINbqEMDOCh4hld4c4zz4rw7H/PWgpPPHMIfOJ8/xLmQ9w==</latexit>

P✓

Which is the right hypothesis/dependency to impose?

We learn it from the data!

The task of generative modelling

24

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

• Hypothesis: is an observed finite set of samples from an underlying distribution

• Goal: Approximate this data distribution from

• How: We learn by maximum likelihood estimation

𝒟 Pdata

𝒟

Pθ θ⋆ = arg max
Pθ

𝔼x∼Pdata [log Pθ(x)]
From KL-Divergence to Log-Likelihood

We can simplify this somewhat:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�

= Ex⇠Pdata [logPdata(x)]� Ex⇠Pdata [logP✓(x)]

The first term does not depend on P✓.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
P✓

D(Pdata||P✓) = argmin
P✓

�Ex⇠Pdata [logP✓(x)] = argmax
P✓

Ex⇠Pdata [logP✓(x)]

Asks that P✓ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where P✓(x) ⇡ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 12 / 31

Types of generative models

25

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

Generative Models

Given a data sample x, a discrimi-

native model aims at predicting its
label y, hence it models the condi-
tional distribution p(y|x). Genera-
tive models instead model the dis-
tribution p(x) defined over the data-
points x. Generative models models
can be di↵erentiated into two cate-
gories: explicit or implicit. In the
former case, we explicitly model the
probability distribution of the data,
in the latter we aim at generating
samples according to it.

Taxonomy. The following figure
depicts the taxonomy of the existing
generative methods:

2

Better density modelling

Better generation quality

Autoregressive models
! The generative process is factorized as a sequential step which

determines the next step activation conditioned on the proceeding one

! The joint distribution is factorized by the chain rule

! The factorized distribution is learned via MLE

! The expected log-likelihood is approximated as

From KL-Divergence to Log-Likelihood

We can simplify this somewhat:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�

= Ex⇠Pdata [logPdata(x)]� Ex⇠Pdata [logP✓(x)]

The first term does not depend on P✓.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
P✓

D(Pdata||P✓) = argmin
P✓

�Ex⇠Pdata [logP✓(x)] = argmax
P✓

Ex⇠Pdata [logP✓(x)]

Asks that P✓ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where P✓(x) ⇡ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 12 / 31

26

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

pθ(x) =
n

∏
i=1

pθ(xi |x<i)

A Survey on Deep Graph Generation: Methods and Applications

(4) Generative adversarial networks

Fake

Training
set

Generator

Real
Discriminator

z

<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="Xl42if6cxc6QO0Tlf6lSuZb3ZnA=">AAAEMnicbVPJbtswEGWiLqm7ZOmxF6FBgaQIDMuQs9yyOc2hQVMgG2AZBkWNbUKUSJBUY4fQr/TafkB/pr0VvfYjSjl2UcklIGD03uPM4wwZCkaVbjS+Lyw6Dx4+erz0pPb02fMXyyura1eKZ5LAJeGMy5sQK2A0hUtNNYMbIQEnIYPrMD4q+OtPIBXl6YUeC+gmeJDSPiVYW6i3stbvBRpG2rzLN4IwMXf5Zm9lvVFvTJY7H3jTYB1N13lv1VkKIk6yBFJNGFaq4zWE7hosNSUM8lqQKRCYxHgAHRumOAHVNRPzufvGIpHb59J+qXYn6L87DE6UGiehVSZYD1WVK8D/cZ1M93e7hqYi05CS+0L9jLmau0Un3IhKIJqNbYCJpNarS4ZYYqJtv0pVwiQv/3MeaxyqMppkTFPJb8voQGIxpGRURjWN7+6RImI0lFiOjeCKFmOh6WArAsLlZEiqLuzZEi5tHksQzMiWGmIBlfoqC/t0UPGEYyDAWBkVtGi1xVK4JTxJcBqZgCRYxrkJIlvEtLy8Qo9KdKugj8FOW8KZdfdBgDXL5Vubh6f2clmlsk4h5CPj5R2v3uqaYCMQtr+MAQs2bYJaLYigby/uZOZGhSyD3JxenL3PTbNx5LXbeUUhIZoJ2i3/xPerAkHTeKY4bvs7B82qYiAB0pnEOzg4ac0nyaRgf53s7G7vHc45Gdum2lHPzBwf+s09eyL7drzqS5kPrpp1b7vuf/TX97emr2gJvUKv0Qby0A7aR6foHF0igkboM/qCvjrfnB/OT+fXvXRxYbrnJSot5/cfQNxurw==</latexit>

fG(z)

<latexit sha1_base64="QQoincfjuDFtmnbL/Y/7wPIPOvk=">AAAEMnicbVPJbtswEGWiLqm7ZOmxF6FBgaQIDMuws9yy2EEODZoC2QDLMChqZBOiRIKkGruEfqXX9gP6M+2t6LUfUcqxi0ouAQGj9x5nHmfIQDCqdKPxfWnZefDw0eOVJ7Wnz56/WF1b37hWPJMErghnXN4GWAGjKVxpqhncCgk4CRjcBPFJwd98BKkoTy/1REA/wcOURpRgbaHB2kY08DWMtenkW36QmHG+PVjbbNQb0+UuBt4s2ESzdTFYd1b8kJMsgVQThpXqeQ2h+wZLTQmDvOZnCgQmMR5Cz4YpTkD1zdR87r6xSOhGXNov1e4U/XeHwYlSkySwygTrkapyBfg/rpfpaL9vaCoyDSm5LxRlzNXcLTrhhlQC0WxiA0wktV5dMsISE237VaoSJHn5n/NY40CV0SRjmkp+V0aHEosRJeMyqmn86R4pIkYDieXECK5oMRaaDndCIFxOh6Tqwp4t4dLmsQTBjOyoERZQqa+yIKLDiiccAwHGyqigRastlsId4UmC09D4JMEyzo0f2iKm7eUVelyi2wXdATttCefW3XsB1iyXb20entrLZZXKOoWAj42X97x6u2/8LV/Y/jIGzN+2CWo1P4TIXtzpzI0KWAa5Obs8f5ebZuPE63bzikJCOBd0263TVqsqEDSN54pOt7V31KwqhhIgnUu8o6PT9mKSTAr218ne/u7B8YKTiW2qHfXcTOe41TywJ7Jvx6u+lMXguln3duutD63Nw53ZK1pBr9BrtIU8tIcO0Rm6QFeIoDH6jL6gr84354fz0/l1L11emu15iUrL+f0HLhZuqg==</latexit>

fD(x)

(5) Diffusion models

xt zx1 xt–1
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

x0

… …
Forward:

Reverse:

Add noise

Denoise

(2) Variational autoencoders

Encoder Decoderz
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="1Tg6IL1/lohj65DcbE0dkeDMLUw=">AAAEOnicbVNbb9MwFPYWLqPcNniDl4gJaUNT1VTpLm+7ddoDE0PaTWqqynFOWyt2bGyHtYsi8Wt4hR/AH+GVN8QrPwCnaxFJsRTp5Ps+n/P5HDuUjGrTaHxfWHTu3L13f+lB7eGjx0+eLq88u9AiVQTOiWBCXYVYA6MJnBtqGFxJBZiHDC7D+KDgLz+C0lQkZ2YsocvxIKF9SrCxUG/5xYdeIId0LQh5dpO7AaeRW8SjfL23vNqoNybLnQ+8abCKpuu0t+IsBZEgKYfEEIa17ngNaboZVoYSBnktSDVITGI8gI4NE8xBd7PJIXL3tUUity+U/RLjTtB/d2SYaz3moVVybIa6yhXg/7hOavrb3YwmMjWQkNtC/ZS5RrhFR9yIKiCGjW2AiaLWq0uGWGFibN9KVUKel/+FiA0OdRnlKTNUiesyOlDY9pmMyqih8c0tUkSMhgqrcSaFpsV4aDLYiIAINRmWrkt7Ni6UzWMJghnZ0EMsoVJfp2GfDiqecAwEGCujkhattlgC10RwjpMoCwjHKs6zILJFspaXV+hRiW4V9CHYaSs4se7eSbBmhXpj84jEXjKr1NYphGKUeXnHq7e6WbAWSNtfxoAF6zZBrRZE0LcXeDLzTIcshTw7Pjt5m2fNxoHXbucVhYJoJmi3/CPfrwokTeKZ4rDtb+01q4qBAkhmEm9v76g1nyRVkv11srW9ubM/52Rsm2pHPTNzuO83d+yJ7Nvxqi9lPrho1r3Nuv/eX93dmL6iJfQSvUJryENbaBcdo1N0jgj6hD6jL+ir88354fx0ft1KFxeme56j0nJ+/wHjMHG4</latexit>

q�(z | x)
<latexit sha1_base64="zWRpgDfxGC365u++4R0QJu2KMqU=">AAAEPHicbVPJbtswEGWiLqm7JGmP7UFoUCApAsMy5Cy3bA5yaNAUyAZYhkFRY5sQKRIk1dgRdOnX9Np+QP+j996KXnsu5dhFJZeAgNF7jzOPM2QoGdWm0fi+sOjcu//g4dKj2uMnT58tr6w+v9QiVQQuiGBCXYdYA6MJXBhqGFxLBZiHDK7C+LDgrz6C0lQk52YsocvxIKF9SrCxUG/llewFZggGrwchz0a5G3AauUV8m2/0VtYa9cZkufOBNw3W0HSd9VadpSASJOWQGMKw1h2vIU03w8pQwiCvBakGiUmMB9CxYYI56G42OUbuvrFI5PaFsl9i3An6744Mc63HPLRKjs1QV7kC/B/XSU1/p5vRRKYGEnJXqJ8y1wi36IkbUQXEsLENMFHUenXJECtMjO1cqUrI8/K/ELHBoS6jPGWGKnFTRgcKyyElozJqaHx7hxQRo6HCapxJoWkxIJoMNiMgQk3GpevSno0LZfNYgmBGNvUQS6jU12nYp4OKJxwDAcbKqKRFqy2WwA0RnOMkygLCsYrzLIhskazl5RV6VKJbBX0EdtoKTq279xKsWaHe2jwisdfMKrV1CqEYZV7e8eqtbhasB9L2lzFgwYZNUKsFEfTtFZ7MPNMhSyHPTs5P3+VZs3Hotdt5RaEgmgnaLf/Y96sCSZN4pjhq+9v7zapioACSmcTb3z9uzSdJlWR/nWzvbO0ezDkZ26baUc/MHB34zV17Ivt2vOpLmQ8um3Vvq+5/8Nf2NqevaAm9RK/ROvLQNtpDJ+gMXSCCPqHP6Av66nxzfjg/nV930sWF6Z4XqLSc338AXulyoA==</latexit>

p✓(x | z)

(3) Normalizing flows

z Inverse
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="mlB6hVlRuPPc3W+UK++rCk8U0jM=">AAAEJ3icbVNbb9MwFPYWLqNctsEjLxET0oamqqnSXd5267QHJoa0G2qqyXFOWit2bNkOa4nyK3iFH8Cv4Q3BI/8Ep2sRSbEU6eT7Pp/z+Rw7lIxq02r9Wlh07t1/8HDpUePxk6fPlldWn19qkSkCF0Qwoa5DrIHRFC4MNQyupQLMQwZXYXJY8lcfQWkq0nMzltDneJDSmBJsLPQhXg9Cno+KjZuVtVazNVnufOBNgzU0XWc3q85SEAmScUgNYVjrnteSpp9jZShhUDSCTIPEJMED6NkwxRx0P584LtzXFoncWCj7pcadoP/uyDHXesxDq+TYDHWdK8H/cb3MxDv9nKYyM5CSu0Jxxlwj3PL4bkQVEMPGNsBEUevVJUOsMDG2SZUqIS+q/0IkBoe6ivKMGarEbRUdKCyHlIyqqKHJpzukjBgNFVbjXApNy1nQdLAZARFqMhndlPZsXCibxxIEM7Kph1hCrb7OwpgOap5wAgQYq6KSlq22WAq3RHCO0ygPCMcqKfIgskXyjlfU6FGF7pT0EdhpKzi17t5JsGaFemPziNTeKKvU1imEYpR7Rc9rdvp5sB5I21/GgAUbNkGjEUQQ29s6mXmuQ5ZBkZ+cn74t8nbr0Ot2i5pCQTQTdDv+se/XBZKmyUxx1PW399t1xUABpDOJt79/3JlPkinJ/jrZ3tnaPZhzMrZNtaOemTk68Nu79kT27Xj1lzIfXLab3lbTf++v7W1OX9ESeoleoXXkoW20h07QGbpABHH0GX1BX51vznfnh/PzTrq4MN3zAlWW8/sP8SRqYw==</latexit>

f(x)
<latexit sha1_base64="MfVe6iG2OFq2STxGpqU4PhfCFN4=">AAAELHicbVPLbtQwFHUbHmV4tbBkE1EhtaiMJqNMH7u+puqCiiL1JU2mlePczFhxYst2aKdW/oMtfABfwwYhtnwHznQGkQyWIt2cc3zv8b12KBhVutX6MTfv3Lv/4OHCo8bjJ0+fPV9cenGmeC4JnBLOuLwIsQJGMzjVVDO4EBJwGjI4D5O9kj//BFJRnp3okYB+igcZjSnB2kKX8aV55xUrQZia22L1anG51WyNlzsbeJNgGU3W8dWSsxBEnOQpZJowrFTPawndN1hqShgUjSBXIDBJ8AB6NsxwCqpvxrYL941FIjfm0n6ZdsfovzsMTpUapaFVplgPVZ0rwf9xvVzHm31DM5FryMhdoThnruZu2QM3ohKIZiMbYCKp9eqSIZaYaNupSpUwLar/nCcah6qKpjnTVPLrKjqQWAwpuamimia3d0gZMRpKLEdGcEXLgdBssBYB4XI8HtUU9mwplzaPJQhmZE0NsYBafZWHMR3UPOEECDBWRQUtW22xDK4JT1OcRSYgKZZJYYLIFjEdr6jRNxW6U9L7YKct4ci6+yDAmuXyrc3DM3utrFJZpxDyG+MVPa/Z6ZtgJRC2v4wBC1ZtgkYjiCC2V3Y8c6NClkNhDk+O3hem3drzut2ippAQTQXdjn/g+3WBoFkyVex3/Y2ddl0xkADZVOLt7Bx0ZpPkUrC/TjY217d2Z5yMbFPtqKdm9nf99pY9kX07Xv2lzAZn7aa33vQ/+svba5NXtIBeoddoBXloA22jQ3SMThFBEn1GX9BX55vz3fnp/LqTzs9N9rxEleX8/gMqj2xL</latexit>

f�1(z)
Flow

(1) Auto-regressive models
Node ordering

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="EfmTdxO8YKNj1ABlo7G2Soy0PEQ=">AAAEPXicbVPLbhMxFHUbHiW8WlgipBEVUotKlImSPnZ9peqCiiL1JWWiyOO5Sayxx8b20ARrVnwNW/gAvoMPYIfYssWTJoiZYGmk63OO7z2+dxxKRrWp178vLFZu3b5zd+le9f6Dh48eL688udAiVQTOiWBCXYVYA6MJnBtqGFxJBZiHDC7D+CDnLz+A0lQkZ2YsocvxIKF9SrBxUG/5+fu1IOR2lPWMF3AaedOdNa/9bL23vFqv1SfLmw/8abCKpuu0t1JZCiJBUg6JIQxr3fHr0nQtVoYSBlk1SDVITGI8gI4LE8xBd+3kHpn30iGR1xfKfYnxJui/JyzmWo956JQcm6Euczn4P66Tmv5219JEpgYSclOonzLPCC9vihdRBcSwsQswUdR59cgQK0yMa12hSsiz4l6I2OBQF1GeMkOVuC6iA4XlkJJRETU0/niD5BGjocJqbKXQNJ8QTQYbERChJvPSNenuxoVyeRxBMCMbeogllOrrNOzTQckTjoEAY0VU0rzVDkvgmgjOcRLZgHCs4swGkStiW35WokcFupXTh+CmreDEuXsrwZkV6pXLIxL3nzmldk4hFCPrZx2/1uraYC2Qrr+MAQvWXYJqNYig7/7hycytDlkKmT0+O3mT2Ub9wG+3s5JCQTQTtFvNo2azLJA0iWeKw3Zza69RVgwUQDKT+Ht7R635JKmS7K+Tre3Nnf05J2PXVDfqmZnD/WZjx93IvR2//FLmg4tGzd+sNd81V3c3pq9oCT1DL9Aa8tEW2kXH6BSdI4I+oc/oC/pa+Vb5UflZ+XUjXVyYnnmKCqvy+w8rm3LU</latexit>

q(xt | xt�1)

<latexit sha1_base64="1r4qz7hhJ4RPyNwdl/AwhYmjBTs=">AAAERnicbVPLbhMxFHWbAiW8WliyGVGBWlSiTDTpY9dXqi6oKFJfUiaKPJ6bxBp7bNkemmDNH/A1bOED+AV+gh1ii5MmFTPB0kh3zjm+9/heO5KMalOv/1xYrCzdu/9g+WH10eMnT5+trD6/1CJTBC6IYEJdR1gDoylcGGoYXEsFmEcMrqLkcMxffQKlqUjPzUhCh+N+SnuUYOOg7sob2Q3NAAxeDyNuh3nXmnd+7oWcxt4dkm90V9bqtfpkefOBPw3W0HSddVcry2EsSMYhNYRhrdt+XZqOxcpQwiCvhpkGiUmC+9B2YYo56I6dHCj3Xjsk9npCuS813gT9d4fFXOsRj5ySYzPQZW4M/o9rZ6a307E0lZmBlNwW6mXMM8Ibd8eLqQJi2MgFmCjqvHpkgBUmxvWwUCXiefFfiMTgSBdRnjFDlbgpon2F5YCSYRE1NPl8i4wjRiOF1chKoel4VDTtb8ZAhJoMTtekOxsXyuVxBMGMbOoBllCqr7OoR/slTzgBAowVUUnHrXZYCjdEcI7T2IaEY5XkNoxdEdv08xI9LNDNMX0EbtoKTp27DxKcWaHeujwidRfOKbVzCpEYWj9v+7Vmx4broXT9ZQxYuOESVKthDD13mScztzpiGeT25Pz0fW4b9UO/1cpLCgXxTNBqBsdBUBZImiYzxVEr2N5vlBV9BZDOJP7+/nFzPkmmJLtzsr2ztXsw52TkmupGPTNzdBA0dt2J3Nvxyy9lPrhs1PytWvAxWNvbnL6iZfQSvULryEfbaA+doDN0gQj6gr6ib+h75UflV+V35c+tdHFhuucFKqwl9BceC3X3</latexit>

p✓(xt�1 | xt)

Figure 2: A summary of graph generative models for deep graph generation, including (1) auto-
regressive models, (2) variational autoencoders, (3) normalizing flows, (4) generative adversarial
networks, and (5) diffusion models.

• Graph structure learning [22, 23] simultaneously learns an optimized graph structure along
with representations for downstream tasks. Unlike graph generation that aims to generate new
graphs, the purpose of graph structure learning is to improve the given noisy or incomplete
graphs.

• Generative sampling [24, 25, 26] learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets such as
citation networks, graph generative sampling could serve as an alternative approach to generate
large-scale graphs by sampling subgraphs from a large graph and reconstructing a new graph.

• Set generation [27, 28] seeks to generate set objects, such as point clouds or 3D molecules,
which is similar to graph generation in that graphs are also set objects. In this survey, we only
focus on graph generation whose objective concerns with generation of both the nodes and edges
matrices, whereas set generation typically does not consider edge features. Nevertheless, we
recognize that several set generation methods share significant similarities with graph generation.

3 Algorithm Taxonomy

For deep graph generation, we present an encoder–sampler–decoder pipeline, as shown in Figure 1,
to characterize most existing graph generative models in a unified framework. Here, the observed
graphs are first mapped into a stochastic low-dimensional latent space, with latent representations
following a stochastic distribution. A random sample is drawn from that distribution and then passed
through a decoder to restore graph structures, which are typically represented in an adjacency matrix
as well as feature matrices. Under this framework, we organize various methods around three key
components:

The encoder. The encoding function f⇥(z | G) represent discrete graph objects as dense, continu-
ous vectors. To ensure the learned latent space is meaningful for generation, we employ probabilistic
generative models (e.g., variational graph neural networks) as the encoder. Formally, the encoder
function f⇥ outputs the parameters of a stochastic distribution following a prior distribution p(z).

The sampler. Consequently, the graph generation model samples latent representations from the
learned distribution z ⇠ p(z). In graph generation, there are two sampling strategies: random
sampling and controllable sampling. Random sampling refers to randomly sampling latent codes
from the learned distribution. It is also called distribution learning in some literature [29]. In contrast,
controllable sampling aims to sample the latent code in an ultimate attempt to generate new graphs
with desired properties. In practice, controllable sampling usually depends on different types of deep
generative models and requires an additional optimization term beyond random generation.

The decoder. After receiving the latent representations sampled from the learned distribution, the
decoder restores them to graph structures. Compared to the encoder, the decoder involved in the

3

Empirical Maximum Likelihood

We can now use Monte Carlo to derive a practical learning objective:

We approximate the expected log-likelihood

Ex⇠Pdata [logP✓(x)]

with the empirical log-likelihood:

ED [logP✓(x)] =
1

|D|
X

x2D
logP✓(x)

Maximum likelihood learning is then:

max
P✓

1

|D|
X

x2D
logP✓(x)

Equivalently, we maximize probability of the data under model
P✓(x(1), · · · , x(m)) =

Q
x2D P✓(x)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 16 / 31

Autoregressive models
! The generative process is factorized as a sequential step which

determines the next step activation conditioned on the proceeding one

! The joint distribution is factorized by the chain rule

! The factorized distribution is learned via MLE

! The expected log-likelihood is approximated as

From KL-Divergence to Log-Likelihood

We can simplify this somewhat:

D(Pdata||P✓) = Ex⇠Pdata


log

✓
Pdata(x)
P✓(x)

◆�

= Ex⇠Pdata [logPdata(x)]� Ex⇠Pdata [logP✓(x)]

The first term does not depend on P✓.

Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

argmin
P✓

D(Pdata||P✓) = argmin
P✓

�Ex⇠Pdata [logP✓(x)] = argmax
P✓

Ex⇠Pdata [logP✓(x)]

Asks that P✓ assign high probability to instances sampled from Pdata,
so as to reflect the true distribution
Because of log, samples x where P✓(x) ⇡ 0 weigh heavily in objective

Although we can now compare models, since we are ignoring H(Pdata), we
don’t know how close we are to the optimum

Problem: In general we do not know Pdata.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 12 / 31

26

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

pθ(x) =
n

∏
i=1

pθ(xi |x<i)

A Survey on Deep Graph Generation: Methods and Applications

(4) Generative adversarial networks

Fake

Training
set

Generator

Real
Discriminator

z

<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="Xl42if6cxc6QO0Tlf6lSuZb3ZnA=">AAAEMnicbVPJbtswEGWiLqm7ZOmxF6FBgaQIDMuQs9yyOc2hQVMgG2AZBkWNbUKUSJBUY4fQr/TafkB/pr0VvfYjSjl2UcklIGD03uPM4wwZCkaVbjS+Lyw6Dx4+erz0pPb02fMXyyura1eKZ5LAJeGMy5sQK2A0hUtNNYMbIQEnIYPrMD4q+OtPIBXl6YUeC+gmeJDSPiVYW6i3stbvBRpG2rzLN4IwMXf5Zm9lvVFvTJY7H3jTYB1N13lv1VkKIk6yBFJNGFaq4zWE7hosNSUM8lqQKRCYxHgAHRumOAHVNRPzufvGIpHb59J+qXYn6L87DE6UGiehVSZYD1WVK8D/cZ1M93e7hqYi05CS+0L9jLmau0Un3IhKIJqNbYCJpNarS4ZYYqJtv0pVwiQv/3MeaxyqMppkTFPJb8voQGIxpGRURjWN7+6RImI0lFiOjeCKFmOh6WArAsLlZEiqLuzZEi5tHksQzMiWGmIBlfoqC/t0UPGEYyDAWBkVtGi1xVK4JTxJcBqZgCRYxrkJIlvEtLy8Qo9KdKugj8FOW8KZdfdBgDXL5Vubh6f2clmlsk4h5CPj5R2v3uqaYCMQtr+MAQs2bYJaLYigby/uZOZGhSyD3JxenL3PTbNx5LXbeUUhIZoJ2i3/xPerAkHTeKY4bvs7B82qYiAB0pnEOzg4ac0nyaRgf53s7G7vHc45Gdum2lHPzBwf+s09eyL7drzqS5kPrpp1b7vuf/TX97emr2gJvUKv0Qby0A7aR6foHF0igkboM/qCvjrfnB/OT+fXvXRxYbrnJSot5/cfQNxurw==</latexit>

fG(z)

<latexit sha1_base64="QQoincfjuDFtmnbL/Y/7wPIPOvk=">AAAEMnicbVPJbtswEGWiLqm7ZOmxF6FBgaQIDMuws9yy2EEODZoC2QDLMChqZBOiRIKkGruEfqXX9gP6M+2t6LUfUcqxi0ouAQGj9x5nHmfIQDCqdKPxfWnZefDw0eOVJ7Wnz56/WF1b37hWPJMErghnXN4GWAGjKVxpqhncCgk4CRjcBPFJwd98BKkoTy/1REA/wcOURpRgbaHB2kY08DWMtenkW36QmHG+PVjbbNQb0+UuBt4s2ESzdTFYd1b8kJMsgVQThpXqeQ2h+wZLTQmDvOZnCgQmMR5Cz4YpTkD1zdR87r6xSOhGXNov1e4U/XeHwYlSkySwygTrkapyBfg/rpfpaL9vaCoyDSm5LxRlzNXcLTrhhlQC0WxiA0wktV5dMsISE237VaoSJHn5n/NY40CV0SRjmkp+V0aHEosRJeMyqmn86R4pIkYDieXECK5oMRaaDndCIFxOh6Tqwp4t4dLmsQTBjOyoERZQqa+yIKLDiiccAwHGyqigRastlsId4UmC09D4JMEyzo0f2iKm7eUVelyi2wXdATttCefW3XsB1iyXb20entrLZZXKOoWAj42X97x6u2/8LV/Y/jIGzN+2CWo1P4TIXtzpzI0KWAa5Obs8f5ebZuPE63bzikJCOBd0263TVqsqEDSN54pOt7V31KwqhhIgnUu8o6PT9mKSTAr218ne/u7B8YKTiW2qHfXcTOe41TywJ7Jvx6u+lMXguln3duutD63Nw53ZK1pBr9BrtIU8tIcO0Rm6QFeIoDH6jL6gr84354fz0/l1L11emu15iUrL+f0HLhZuqg==</latexit>

fD(x)

(5) Diffusion models

xt zx1 xt–1
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

x0

… …
Forward:

Reverse:

Add noise

Denoise

(2) Variational autoencoders

Encoder Decoderz
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="1Tg6IL1/lohj65DcbE0dkeDMLUw=">AAAEOnicbVNbb9MwFPYWLqPcNniDl4gJaUNT1VTpLm+7ddoDE0PaTWqqynFOWyt2bGyHtYsi8Wt4hR/AH+GVN8QrPwCnaxFJsRTp5Ps+n/P5HDuUjGrTaHxfWHTu3L13f+lB7eGjx0+eLq88u9AiVQTOiWBCXYVYA6MJnBtqGFxJBZiHDC7D+KDgLz+C0lQkZ2YsocvxIKF9SrCxUG/5xYdeIId0LQh5dpO7AaeRW8SjfL23vNqoNybLnQ+8abCKpuu0t+IsBZEgKYfEEIa17ngNaboZVoYSBnktSDVITGI8gI4NE8xBd7PJIXL3tUUity+U/RLjTtB/d2SYaz3moVVybIa6yhXg/7hOavrb3YwmMjWQkNtC/ZS5RrhFR9yIKiCGjW2AiaLWq0uGWGFibN9KVUKel/+FiA0OdRnlKTNUiesyOlDY9pmMyqih8c0tUkSMhgqrcSaFpsV4aDLYiIAINRmWrkt7Ni6UzWMJghnZ0EMsoVJfp2GfDiqecAwEGCujkhattlgC10RwjpMoCwjHKs6zILJFspaXV+hRiW4V9CHYaSs4se7eSbBmhXpj84jEXjKr1NYphGKUeXnHq7e6WbAWSNtfxoAF6zZBrRZE0LcXeDLzTIcshTw7Pjt5m2fNxoHXbucVhYJoJmi3/CPfrwokTeKZ4rDtb+01q4qBAkhmEm9v76g1nyRVkv11srW9ubM/52Rsm2pHPTNzuO83d+yJ7Nvxqi9lPrho1r3Nuv/eX93dmL6iJfQSvUJryENbaBcdo1N0jgj6hD6jL+ir88354fx0ft1KFxeme56j0nJ+/wHjMHG4</latexit>

q�(z | x)
<latexit sha1_base64="zWRpgDfxGC365u++4R0QJu2KMqU=">AAAEPHicbVPJbtswEGWiLqm7JGmP7UFoUCApAsMy5Cy3bA5yaNAUyAZYhkFRY5sQKRIk1dgRdOnX9Np+QP+j996KXnsu5dhFJZeAgNF7jzOPM2QoGdWm0fi+sOjcu//g4dKj2uMnT58tr6w+v9QiVQQuiGBCXYdYA6MJXBhqGFxLBZiHDK7C+LDgrz6C0lQk52YsocvxIKF9SrCxUG/llewFZggGrwchz0a5G3AauUV8m2/0VtYa9cZkufOBNw3W0HSd9VadpSASJOWQGMKw1h2vIU03w8pQwiCvBakGiUmMB9CxYYI56G42OUbuvrFI5PaFsl9i3An6744Mc63HPLRKjs1QV7kC/B/XSU1/p5vRRKYGEnJXqJ8y1wi36IkbUQXEsLENMFHUenXJECtMjO1cqUrI8/K/ELHBoS6jPGWGKnFTRgcKyyElozJqaHx7hxQRo6HCapxJoWkxIJoMNiMgQk3GpevSno0LZfNYgmBGNvUQS6jU12nYp4OKJxwDAcbKqKRFqy2WwA0RnOMkygLCsYrzLIhskazl5RV6VKJbBX0EdtoKTq279xKsWaHe2jwisdfMKrV1CqEYZV7e8eqtbhasB9L2lzFgwYZNUKsFEfTtFZ7MPNMhSyHPTs5P3+VZs3Hotdt5RaEgmgnaLf/Y96sCSZN4pjhq+9v7zapioACSmcTb3z9uzSdJlWR/nWzvbO0ezDkZ26baUc/MHB34zV17Ivt2vOpLmQ8um3Vvq+5/8Nf2NqevaAm9RK/ROvLQNtpDJ+gMXSCCPqHP6Av66nxzfjg/nV930sWF6Z4XqLSc338AXulyoA==</latexit>

p✓(x | z)

(3) Normalizing flows

z Inverse
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="mlB6hVlRuPPc3W+UK++rCk8U0jM=">AAAEJ3icbVNbb9MwFPYWLqNctsEjLxET0oamqqnSXd5267QHJoa0G2qqyXFOWit2bNkOa4nyK3iFH8Cv4Q3BI/8Ep2sRSbEU6eT7Pp/z+Rw7lIxq02r9Wlh07t1/8HDpUePxk6fPlldWn19qkSkCF0Qwoa5DrIHRFC4MNQyupQLMQwZXYXJY8lcfQWkq0nMzltDneJDSmBJsLPQhXg9Cno+KjZuVtVazNVnufOBNgzU0XWc3q85SEAmScUgNYVjrnteSpp9jZShhUDSCTIPEJMED6NkwxRx0P584LtzXFoncWCj7pcadoP/uyDHXesxDq+TYDHWdK8H/cb3MxDv9nKYyM5CSu0Jxxlwj3PL4bkQVEMPGNsBEUevVJUOsMDG2SZUqIS+q/0IkBoe6ivKMGarEbRUdKCyHlIyqqKHJpzukjBgNFVbjXApNy1nQdLAZARFqMhndlPZsXCibxxIEM7Kph1hCrb7OwpgOap5wAgQYq6KSlq22WAq3RHCO0ygPCMcqKfIgskXyjlfU6FGF7pT0EdhpKzi17t5JsGaFemPziNTeKKvU1imEYpR7Rc9rdvp5sB5I21/GgAUbNkGjEUQQ29s6mXmuQ5ZBkZ+cn74t8nbr0Ot2i5pCQTQTdDv+se/XBZKmyUxx1PW399t1xUABpDOJt79/3JlPkinJ/jrZ3tnaPZhzMrZNtaOemTk68Nu79kT27Xj1lzIfXLab3lbTf++v7W1OX9ESeoleoXXkoW20h07QGbpABHH0GX1BX51vznfnh/PzTrq4MN3zAlWW8/sP8SRqYw==</latexit>

f(x)
<latexit sha1_base64="MfVe6iG2OFq2STxGpqU4PhfCFN4=">AAAELHicbVPLbtQwFHUbHmV4tbBkE1EhtaiMJqNMH7u+puqCiiL1JU2mlePczFhxYst2aKdW/oMtfABfwwYhtnwHznQGkQyWIt2cc3zv8b12KBhVutX6MTfv3Lv/4OHCo8bjJ0+fPV9cenGmeC4JnBLOuLwIsQJGMzjVVDO4EBJwGjI4D5O9kj//BFJRnp3okYB+igcZjSnB2kKX8aV55xUrQZia22L1anG51WyNlzsbeJNgGU3W8dWSsxBEnOQpZJowrFTPawndN1hqShgUjSBXIDBJ8AB6NsxwCqpvxrYL941FIjfm0n6ZdsfovzsMTpUapaFVplgPVZ0rwf9xvVzHm31DM5FryMhdoThnruZu2QM3ohKIZiMbYCKp9eqSIZaYaNupSpUwLar/nCcah6qKpjnTVPLrKjqQWAwpuamimia3d0gZMRpKLEdGcEXLgdBssBYB4XI8HtUU9mwplzaPJQhmZE0NsYBafZWHMR3UPOEECDBWRQUtW22xDK4JT1OcRSYgKZZJYYLIFjEdr6jRNxW6U9L7YKct4ci6+yDAmuXyrc3DM3utrFJZpxDyG+MVPa/Z6ZtgJRC2v4wBC1ZtgkYjiCC2V3Y8c6NClkNhDk+O3hem3drzut2ippAQTQXdjn/g+3WBoFkyVex3/Y2ddl0xkADZVOLt7Bx0ZpPkUrC/TjY217d2Z5yMbFPtqKdm9nf99pY9kX07Xv2lzAZn7aa33vQ/+svba5NXtIBeoddoBXloA22jQ3SMThFBEn1GX9BX55vz3fnp/LqTzs9N9rxEleX8/gMqj2xL</latexit>

f�1(z)
Flow

(1) Auto-regressive models
Node ordering

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="EfmTdxO8YKNj1ABlo7G2Soy0PEQ=">AAAEPXicbVPLbhMxFHUbHiW8WlgipBEVUotKlImSPnZ9peqCiiL1JWWiyOO5Sayxx8b20ARrVnwNW/gAvoMPYIfYssWTJoiZYGmk63OO7z2+dxxKRrWp178vLFZu3b5zd+le9f6Dh48eL688udAiVQTOiWBCXYVYA6MJnBtqGFxJBZiHDC7D+CDnLz+A0lQkZ2YsocvxIKF9SrBxUG/5+fu1IOR2lPWMF3AaedOdNa/9bL23vFqv1SfLmw/8abCKpuu0t1JZCiJBUg6JIQxr3fHr0nQtVoYSBlk1SDVITGI8gI4LE8xBd+3kHpn30iGR1xfKfYnxJui/JyzmWo956JQcm6Euczn4P66Tmv5219JEpgYSclOonzLPCC9vihdRBcSwsQswUdR59cgQK0yMa12hSsiz4l6I2OBQF1GeMkOVuC6iA4XlkJJRETU0/niD5BGjocJqbKXQNJ8QTQYbERChJvPSNenuxoVyeRxBMCMbeogllOrrNOzTQckTjoEAY0VU0rzVDkvgmgjOcRLZgHCs4swGkStiW35WokcFupXTh+CmreDEuXsrwZkV6pXLIxL3nzmldk4hFCPrZx2/1uraYC2Qrr+MAQvWXYJqNYig7/7hycytDlkKmT0+O3mT2Ub9wG+3s5JCQTQTtFvNo2azLJA0iWeKw3Zza69RVgwUQDKT+Ht7R635JKmS7K+Tre3Nnf05J2PXVDfqmZnD/WZjx93IvR2//FLmg4tGzd+sNd81V3c3pq9oCT1DL9Aa8tEW2kXH6BSdI4I+oc/oC/pa+Vb5UflZ+XUjXVyYnnmKCqvy+w8rm3LU</latexit>

q(xt | xt�1)

<latexit sha1_base64="1r4qz7hhJ4RPyNwdl/AwhYmjBTs=">AAAERnicbVPLbhMxFHWbAiW8WliyGVGBWlSiTDTpY9dXqi6oKFJfUiaKPJ6bxBp7bNkemmDNH/A1bOED+AV+gh1ii5MmFTPB0kh3zjm+9/heO5KMalOv/1xYrCzdu/9g+WH10eMnT5+trD6/1CJTBC6IYEJdR1gDoylcGGoYXEsFmEcMrqLkcMxffQKlqUjPzUhCh+N+SnuUYOOg7sob2Q3NAAxeDyNuh3nXmnd+7oWcxt4dkm90V9bqtfpkefOBPw3W0HSddVcry2EsSMYhNYRhrdt+XZqOxcpQwiCvhpkGiUmC+9B2YYo56I6dHCj3Xjsk9npCuS813gT9d4fFXOsRj5ySYzPQZW4M/o9rZ6a307E0lZmBlNwW6mXMM8Ibd8eLqQJi2MgFmCjqvHpkgBUmxvWwUCXiefFfiMTgSBdRnjFDlbgpon2F5YCSYRE1NPl8i4wjRiOF1chKoel4VDTtb8ZAhJoMTtekOxsXyuVxBMGMbOoBllCqr7OoR/slTzgBAowVUUnHrXZYCjdEcI7T2IaEY5XkNoxdEdv08xI9LNDNMX0EbtoKTp27DxKcWaHeujwidRfOKbVzCpEYWj9v+7Vmx4broXT9ZQxYuOESVKthDD13mScztzpiGeT25Pz0fW4b9UO/1cpLCgXxTNBqBsdBUBZImiYzxVEr2N5vlBV9BZDOJP7+/nFzPkmmJLtzsr2ztXsw52TkmupGPTNzdBA0dt2J3Nvxyy9lPrhs1PytWvAxWNvbnL6iZfQSvULryEfbaA+doDN0gQj6gr6ib+h75UflV+V35c+tdHFhuucFKqwl9BceC3X3</latexit>

p✓(xt�1 | xt)

Figure 2: A summary of graph generative models for deep graph generation, including (1) auto-
regressive models, (2) variational autoencoders, (3) normalizing flows, (4) generative adversarial
networks, and (5) diffusion models.

• Graph structure learning [22, 23] simultaneously learns an optimized graph structure along
with representations for downstream tasks. Unlike graph generation that aims to generate new
graphs, the purpose of graph structure learning is to improve the given noisy or incomplete
graphs.

• Generative sampling [24, 25, 26] learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets such as
citation networks, graph generative sampling could serve as an alternative approach to generate
large-scale graphs by sampling subgraphs from a large graph and reconstructing a new graph.

• Set generation [27, 28] seeks to generate set objects, such as point clouds or 3D molecules,
which is similar to graph generation in that graphs are also set objects. In this survey, we only
focus on graph generation whose objective concerns with generation of both the nodes and edges
matrices, whereas set generation typically does not consider edge features. Nevertheless, we
recognize that several set generation methods share significant similarities with graph generation.

3 Algorithm Taxonomy

For deep graph generation, we present an encoder–sampler–decoder pipeline, as shown in Figure 1,
to characterize most existing graph generative models in a unified framework. Here, the observed
graphs are first mapped into a stochastic low-dimensional latent space, with latent representations
following a stochastic distribution. A random sample is drawn from that distribution and then passed
through a decoder to restore graph structures, which are typically represented in an adjacency matrix
as well as feature matrices. Under this framework, we organize various methods around three key
components:

The encoder. The encoding function f⇥(z | G) represent discrete graph objects as dense, continu-
ous vectors. To ensure the learned latent space is meaningful for generation, we employ probabilistic
generative models (e.g., variational graph neural networks) as the encoder. Formally, the encoder
function f⇥ outputs the parameters of a stochastic distribution following a prior distribution p(z).

The sampler. Consequently, the graph generation model samples latent representations from the
learned distribution z ⇠ p(z). In graph generation, there are two sampling strategies: random
sampling and controllable sampling. Random sampling refers to randomly sampling latent codes
from the learned distribution. It is also called distribution learning in some literature [29]. In contrast,
controllable sampling aims to sample the latent code in an ultimate attempt to generate new graphs
with desired properties. In practice, controllable sampling usually depends on different types of deep
generative models and requires an additional optimization term beyond random generation.

The decoder. After receiving the latent representations sampled from the learned distribution, the
decoder restores them to graph structures. Compared to the encoder, the decoder involved in the

3

Empirical Maximum Likelihood

We can now use Monte Carlo to derive a practical learning objective:

We approximate the expected log-likelihood

Ex⇠Pdata [logP✓(x)]

with the empirical log-likelihood:

ED [logP✓(x)] =
1

|D|
X

x2D
logP✓(x)

Maximum likelihood learning is then:

max
P✓

1

|D|
X

x2D
logP✓(x)

Equivalently, we maximize probability of the data under model
P✓(x(1), · · · , x(m)) =

Q
x2D P✓(x)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 4 16 / 31

Explicit estimate of
the joint distribution

Latent variable models

27

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

• High-dimensional variables often arise from unknown low-
dimensional latent features

• These latent variables are unobserved

• Learning them is usually intractable

• Deep learning is used to model and infer

x
z

p(x |z)

• The joint distribution can be obtained by marginalizing over the
latent variables

p(x) = ∑
z

p(x, z) = ∑
z

p(x |z)p(z)

Latent Variable Models: Definition

A latent variable model defines a probability distribution

p(x , z) = p(x |z)p(z)

containing two sets of variables:

1 Observed variables x that represent the high-dimensional objects we
are trying to model and that are in our training set.

2 Latent variables z that are not in the dataset, but that are associated
with x as specified by p(x, z). We will learn z and p(x, z) jointly.

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 6 4 / 33

prior on the latent variable

Variational autoencoders (VAEs)

28

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

• Given , the encoder (stochastically) compresses it using

• Given , the decoder reconstructs the input using

• The network is trained with the following loss

 

xi ̂z ∼ qθ(z |xi)

̂z pθ(x | ̂z)

Autoencoder Perspective

L(x; ✓,�) = Eq�(z|x)[log p(z, x; ✓)� log q�(z|x))]
= Eq�(z|x)[log p(z, x; ✓)� log p(z) + log p(z)� log q�(z|x))]
= Eq�(z|x)[log p(x|z; ✓)]� DKL(q�(z|x)kp(z))

1 Take a data point xi

2 Map it to ẑ by sampling from q�(z|xi) (encoder)
3 Reconstruct x̂ by sampling from p(x|ẑ; ✓) (decoder)

What does the training objective L(x; ✓,�) do?
First term encourages x̂ ⇡ x

i (xi likely under p(x|ẑ; ✓))
Second term encourages ẑ to be likely under the prior p(z)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 6 27 / 33

Autoencoder Perspective

L(x; ✓,�) = Eq�(z|x)[log p(z, x; ✓)� log q�(z|x))]
= Eq�(z|x)[log p(z, x; ✓)� log p(z) + log p(z)� log q�(z|x))]
= Eq�(z|x)[log p(x|z; ✓)]� DKL(q�(z|x)kp(z))

1 Take a data point xi

2 Map it to ẑ by sampling from q�(z|xi) (encoder)
3 Reconstruct x̂ by sampling from p(x|ẑ; ✓) (decoder)

What does the training objective L(x; ✓,�) do?
First term encourages x̂ ⇡ x

i (xi likely under p(x|ẑ; ✓))
Second term encourages ẑ to be likely under the prior p(z)

Volodymyr Kuleshov (Cornell Tech) Deep Generative Models, 2023 Lecture 6 27 / 33

good reconstruction
 enforce specific shape

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,

Encoder Decoder

(a) Variational AutoEncoders

Discriminator

True

False
Generator

(b) Generative Adversarial Networks (GAN)

Flow Inverse

(c) Normalizing Flows

... ...

Add noise

Denoise Reverse:

Forward:

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

Diffusion models
! Encoder: Sequential (predefined) steps with increasing level of

Gaussian noise

! Decoder: It learns to reverse that process (denoiser)

29

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,

Encoder Decoder

(a) Variational AutoEncoders

Discriminator

True

False
Generator

(b) Generative Adversarial Networks (GAN)

Flow Inverse

(c) Normalizing Flows

... ...

Add noise

Denoise Reverse:

Forward:

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,

Encoder Decoder

(a) Variational AutoEncoders

Discriminator

True

False
Generator

(b) Generative Adversarial Networks (GAN)

Flow Inverse

(c) Normalizing Flows

... ...

Add noise

Denoise Reverse:

Forward:

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

Diffusion Models: Key components
! Two main components: noise model and denoise network

30

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

�!<latexit sha1_base64="7yFrn0YPyuP5dVIvc7Tl2zcbS/g=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyaXYbmk2WJKvU0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhSln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tMEdokkkvVCbGmnAnaNMxw2kkVxUnIaTsc3cz89gNVmklxb8YpDRIcCxYxgo2V+m65x6WIFYuHBislH/tuxat6c6BV4uekAjkafferN5AkS6gwhGOtu76XmmCClWGE02mpl2maYjLCMe1aKnBCdTCZHz5Fp1YZoEgqW8Kgufp7YoITrcdJaDsTbIZ62ZuJ/3ndzERXwYSJNDNUkMWiKOPISDRLAQ2YosTwsSWYKGZvRWSIFSbGZlWyIfjLL6+SVq3qn1drdxeV+nUeRxGO4QTOwIdLqMMtNKAJBDJ4hld4c56cF+fd+Vi0Fpx85gj+wPn8AXOGk5o=</latexit>

xT �! · · · �! xt �����! xt�1 �! · · · �! x0
<latexit sha1_base64="l4LvSgM7PR7I/kkuy5soikK4gpU=">AAAEoXictVLditNAFE7XqGv92a5eejOYLexKLU0VFKRQ9EYvhCrb3YUklOlk2g6dnzBzYrcb8zK+lU/gazhJK6atuiB4YODM+T/n+8YJZwY6nW+1vRvuzVu39+/U7967/+CgcfjwzKhUEzokiit9McaGcibpEBhwepFoisWY0/Px/G3hP/9MtWFKnsIyoZHAU8kmjGCwplHjeygwzAjThNM4Kz/jSXaZj05zFHIlp5pNZ4C1VgsUkliB2TX/oQLYCpe/4rJwZhJM6NPMJyLPt9IM0SwBA0tOUaVGBs/8/J8mWVRH6eSjhtdpd0pBu4q/VjxnLYPR4d7XMFYkFVQC4diYwO8kEGVYA7P183qYGmr3meMpDawqsaAmykpEctS0lhhNlLZPAiqt1YwMC2OWYmwjiynNtq8w/s4XpDB5FWVMJilQSVaNJilHoFABL4qZpgT40irYntTOisgMa0zAkqC+0QbY/MquIfCcYssbsBH1UNIFUUJgGVePGfhR1qyj1YETXAaH/SqAnp836/lGftUfdNcFiqbBT8L2jouQdvE9iVAoVUyDWONFa5XVYlJSjezEPT+BlmCSiVQgw65or2vBaE0Y5z1e4D/VeBmhstwJyo5C0YeZ53vdo/z19lhVjly71+K6xRb/ZbO/rbLCS8HMwmVZ7W9zeFc567b95+3uxxde/82a3/vOY+eJc+z4zkun77xzBs7QIbUPNVP7Ustdz33vDtxPq9C92jrnkbMhbvAD81mObw==</latexit>

p✓(xt�1|xt)
<latexit sha1_base64="XVzP503G8Ma8Lkwk3KKGZcZJbZ0=">AAACEnicbVC7SgNBFJ2Nrxhfq5Y2g0FICsNuFEwZsLGMYB6QLMvsZDYZMvtg5q4Y1nyDjb9iY6GIrZWdf+Mk2SImHrhwOOde7r3HiwVXYFk/Rm5tfWNzK79d2Nnd2z8wD49aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj66nfvmdS8Si8g3HMnIAMQu5zSkBLrlmO3R4MGZBSLyAw9Pz0YeKmcG5P8CNekKDsmkWrYs2AV4mdkSLK0HDN714/oknAQqCCKNW1rRiclEjgVLBJoZcoFhM6IgPW1TQkAVNOOntpgs+00sd+JHWFgGfq4kRKAqXGgac7p0eqZW8q/ud1E/BrTsrDOAEW0vkiPxEYIjzNB/e5ZBTEWBNCJde3YjokklDQKRZ0CPbyy6ukVa3YF5Xq7WWxXsviyKMTdIpKyEZXqI5uUAM1EUVP6AW9oXfj2Xg1PozPeWvOyGaO0R8YX7+bCp4F</latexit>

q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Forward diffusion process (fixed)

is not tractable!

<latexit sha1_base64="ESKJ/ZuZ2mhZilh8aMffIGRHzFc=">AAACDXicbVC5TsNAEF2HK4TLQEmzIiCFgshGXGUEDWWQyCEllrXerJNV1ge7Y0Rk/AM0/AoNBQjR0tPxN9iJixB40khP781oZp4TCq7AML61wtz8wuJScbm0srq2vqFvbjVVEEnKGjQQgWw7RDHBfdYADoK1Q8mI5wjWcoaXmd+6Y1LxwL+BUcgsj/R97nJKIJVsfe+20vUIDBw3vk/sGA7NBD/gKQnwQcnWy0bVGAP/JWZOyihH3da/ur2ARh7zgQqiVMc0QrBiIoFTwZJSN1IsJHRI+qyTUp94TFnx+JsE76dKD7uBTMsHPFanJ2LiKTXynLQzO1PNepn4n9eJwD23Yu6HETCfTha5kcAQ4Cwa3OOSURCjlBAqeXorpgMiCYU0wCwEc/blv6R5VDVPqyfXx+XaRR5HEe2gXVRBJjpDNXSF6qiBKHpEz+gVvWlP2ov2rn1MWgtaPrONfkH7/AGTcZs9</latexit>

q(xt�1|xt)
<latexit sha1_base64="HpmJ2aItcn+KhCksGGoPC8GtyNU=">AAACPnicbVC7TsMwFHV4lvIqMLJYVEgwUCWI11jBwlgk0lZqoshxHWrhJMa+QVShX8bCN7AxsjCAECsj7mMoLUeydHTOufK9J5SCa7DtV2tmdm5+YbGwVFxeWV1bL21s1nWaKcpcmopUNUOimeAJc4GDYE2pGIlDwRrh7UXfb9wzpXmaXENXMj8mNwmPOCVgpKDkYhl40GFA9ryYQCeM8odekMOB03scE2Afe0RKlT7gu6kgfsTjUbyPg1LZrtgD4GnijEgZjVALSi9eO6VZzBKggmjdcmwJfk4UcCpYr+hlmklCb8kNaxmakJhpPx+c38O7RmnjKFXmJYAH6vhETmKtu3Fokv019aTXF//zWhlEZ37OE5kBS+jwoygTGFLc7xK3uWIURNcQQhU3u2LaIYpQMI0XTQnO5MnTpH5YcU4qx1dH5er5qI4C2kY7aA856BRV0SWqIRdR9ITe0Af6tJ6td+vL+h5GZ6zRzBb6A+vnF+QTsBk=</latexit>

p✓(xt�1|xt) ⇡ q(xt�1|xt)Learn

Reverse denoising process (generative)

https://www.corona-data.ch
https://www.corona-data.ch

Generative adversarial networks
(GANs)

31

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,

Encoder Decoder

(a) Variational AutoEncoders

Discriminator

True

False
Generator

(b) Generative Adversarial Networks (GAN)

Flow Inverse

(c) Normalizing Flows

... ...

Add noise

Denoise Reverse:

Forward:

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

ℒ = min max 𝔼x∼pdata [log(fD(x))] + 𝔼z∼p(z) [log(1 − fD(fG(z)))]

• Train two neural networks in a min-max game:

• Generator: Produces fake data to fool the discriminators

• Discriminator: Learns to distinguish real data from fake

• Loss function:

Summary

32

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

A Survey on Deep Graph Generation: Methods and Applications

(4) Generative adversarial networks

Fake

Training
set

Generator

Real
Discriminator

z

<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="Xl42if6cxc6QO0Tlf6lSuZb3ZnA=">AAAEMnicbVPJbtswEGWiLqm7ZOmxF6FBgaQIDMuQs9yyOc2hQVMgG2AZBkWNbUKUSJBUY4fQr/TafkB/pr0VvfYjSjl2UcklIGD03uPM4wwZCkaVbjS+Lyw6Dx4+erz0pPb02fMXyyura1eKZ5LAJeGMy5sQK2A0hUtNNYMbIQEnIYPrMD4q+OtPIBXl6YUeC+gmeJDSPiVYW6i3stbvBRpG2rzLN4IwMXf5Zm9lvVFvTJY7H3jTYB1N13lv1VkKIk6yBFJNGFaq4zWE7hosNSUM8lqQKRCYxHgAHRumOAHVNRPzufvGIpHb59J+qXYn6L87DE6UGiehVSZYD1WVK8D/cZ1M93e7hqYi05CS+0L9jLmau0Un3IhKIJqNbYCJpNarS4ZYYqJtv0pVwiQv/3MeaxyqMppkTFPJb8voQGIxpGRURjWN7+6RImI0lFiOjeCKFmOh6WArAsLlZEiqLuzZEi5tHksQzMiWGmIBlfoqC/t0UPGEYyDAWBkVtGi1xVK4JTxJcBqZgCRYxrkJIlvEtLy8Qo9KdKugj8FOW8KZdfdBgDXL5Vubh6f2clmlsk4h5CPj5R2v3uqaYCMQtr+MAQs2bYJaLYigby/uZOZGhSyD3JxenL3PTbNx5LXbeUUhIZoJ2i3/xPerAkHTeKY4bvs7B82qYiAB0pnEOzg4ac0nyaRgf53s7G7vHc45Gdum2lHPzBwf+s09eyL7drzqS5kPrpp1b7vuf/TX97emr2gJvUKv0Qby0A7aR6foHF0igkboM/qCvjrfnB/OT+fXvXRxYbrnJSot5/cfQNxurw==</latexit>

fG(z)

<latexit sha1_base64="QQoincfjuDFtmnbL/Y/7wPIPOvk=">AAAEMnicbVPJbtswEGWiLqm7ZOmxF6FBgaQIDMuws9yy2EEODZoC2QDLMChqZBOiRIKkGruEfqXX9gP6M+2t6LUfUcqxi0ouAQGj9x5nHmfIQDCqdKPxfWnZefDw0eOVJ7Wnz56/WF1b37hWPJMErghnXN4GWAGjKVxpqhncCgk4CRjcBPFJwd98BKkoTy/1REA/wcOURpRgbaHB2kY08DWMtenkW36QmHG+PVjbbNQb0+UuBt4s2ESzdTFYd1b8kJMsgVQThpXqeQ2h+wZLTQmDvOZnCgQmMR5Cz4YpTkD1zdR87r6xSOhGXNov1e4U/XeHwYlSkySwygTrkapyBfg/rpfpaL9vaCoyDSm5LxRlzNXcLTrhhlQC0WxiA0wktV5dMsISE237VaoSJHn5n/NY40CV0SRjmkp+V0aHEosRJeMyqmn86R4pIkYDieXECK5oMRaaDndCIFxOh6Tqwp4t4dLmsQTBjOyoERZQqa+yIKLDiiccAwHGyqigRastlsId4UmC09D4JMEyzo0f2iKm7eUVelyi2wXdATttCefW3XsB1iyXb20entrLZZXKOoWAj42X97x6u2/8LV/Y/jIGzN+2CWo1P4TIXtzpzI0KWAa5Obs8f5ebZuPE63bzikJCOBd0263TVqsqEDSN54pOt7V31KwqhhIgnUu8o6PT9mKSTAr218ne/u7B8YKTiW2qHfXcTOe41TywJ7Jvx6u+lMXguln3duutD63Nw53ZK1pBr9BrtIU8tIcO0Rm6QFeIoDH6jL6gr84354fz0/l1L11emu15iUrL+f0HLhZuqg==</latexit>

fD(x)

(5) Diffusion models

xt zx1 xt–1
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

x0

… …
Forward:

Reverse:

Add noise

Denoise

(2) Variational autoencoders

Encoder Decoderz
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="1Tg6IL1/lohj65DcbE0dkeDMLUw=">AAAEOnicbVNbb9MwFPYWLqPcNniDl4gJaUNT1VTpLm+7ddoDE0PaTWqqynFOWyt2bGyHtYsi8Wt4hR/AH+GVN8QrPwCnaxFJsRTp5Ps+n/P5HDuUjGrTaHxfWHTu3L13f+lB7eGjx0+eLq88u9AiVQTOiWBCXYVYA6MJnBtqGFxJBZiHDC7D+KDgLz+C0lQkZ2YsocvxIKF9SrCxUG/5xYdeIId0LQh5dpO7AaeRW8SjfL23vNqoNybLnQ+8abCKpuu0t+IsBZEgKYfEEIa17ngNaboZVoYSBnktSDVITGI8gI4NE8xBd7PJIXL3tUUity+U/RLjTtB/d2SYaz3moVVybIa6yhXg/7hOavrb3YwmMjWQkNtC/ZS5RrhFR9yIKiCGjW2AiaLWq0uGWGFibN9KVUKel/+FiA0OdRnlKTNUiesyOlDY9pmMyqih8c0tUkSMhgqrcSaFpsV4aDLYiIAINRmWrkt7Ni6UzWMJghnZ0EMsoVJfp2GfDiqecAwEGCujkhattlgC10RwjpMoCwjHKs6zILJFspaXV+hRiW4V9CHYaSs4se7eSbBmhXpj84jEXjKr1NYphGKUeXnHq7e6WbAWSNtfxoAF6zZBrRZE0LcXeDLzTIcshTw7Pjt5m2fNxoHXbucVhYJoJmi3/CPfrwokTeKZ4rDtb+01q4qBAkhmEm9v76g1nyRVkv11srW9ubM/52Rsm2pHPTNzuO83d+yJ7Nvxqi9lPrho1r3Nuv/eX93dmL6iJfQSvUJryENbaBcdo1N0jgj6hD6jL+ir88354fx0ft1KFxeme56j0nJ+/wHjMHG4</latexit>

q�(z | x)
<latexit sha1_base64="zWRpgDfxGC365u++4R0QJu2KMqU=">AAAEPHicbVPJbtswEGWiLqm7JGmP7UFoUCApAsMy5Cy3bA5yaNAUyAZYhkFRY5sQKRIk1dgRdOnX9Np+QP+j996KXnsu5dhFJZeAgNF7jzOPM2QoGdWm0fi+sOjcu//g4dKj2uMnT58tr6w+v9QiVQQuiGBCXYdYA6MJXBhqGFxLBZiHDK7C+LDgrz6C0lQk52YsocvxIKF9SrCxUG/llewFZggGrwchz0a5G3AauUV8m2/0VtYa9cZkufOBNw3W0HSd9VadpSASJOWQGMKw1h2vIU03w8pQwiCvBakGiUmMB9CxYYI56G42OUbuvrFI5PaFsl9i3An6744Mc63HPLRKjs1QV7kC/B/XSU1/p5vRRKYGEnJXqJ8y1wi36IkbUQXEsLENMFHUenXJECtMjO1cqUrI8/K/ELHBoS6jPGWGKnFTRgcKyyElozJqaHx7hxQRo6HCapxJoWkxIJoMNiMgQk3GpevSno0LZfNYgmBGNvUQS6jU12nYp4OKJxwDAcbKqKRFqy2WwA0RnOMkygLCsYrzLIhskazl5RV6VKJbBX0EdtoKTq279xKsWaHe2jwisdfMKrV1CqEYZV7e8eqtbhasB9L2lzFgwYZNUKsFEfTtFZ7MPNMhSyHPTs5P3+VZs3Hotdt5RaEgmgnaLf/Y96sCSZN4pjhq+9v7zapioACSmcTb3z9uzSdJlWR/nWzvbO0ezDkZ26baUc/MHB34zV17Ivt2vOpLmQ8um3Vvq+5/8Nf2NqevaAm9RK/ROvLQNtpDJ+gMXSCCPqHP6Av66nxzfjg/nV930sWF6Z4XqLSc338AXulyoA==</latexit>

p✓(x | z)

(3) Normalizing flows

z Inverse
<latexit sha1_base64="jU3vURyuvhXumZhNxGXpJKJ8Y/g=">AAAEUnichVPdbtMwFE7WAlsYbIVLbiyqSkPaoqQ/6zapaNJuuGNIdJuUhspx3daKHUe2w1aiPAdPwy28ADe8Clc4bTqaDIkjRTrn+86f7S9BTIlUjvPL3KrVHz1+sr1jPd199nxvv/HiSvJEIDxEnHJxE0CJKYnwUBFF8U0sMGQBxddBeJHz15+xkIRHH9Uixj6Ds4hMCYJKQ+OG6YzQHLMpmXlQcQYkjgeu3cbMTy2wYe9bwHUKZOCdnTp+C5yWMrQdbABH3lnH8S+ornOreW+sdYrbc3zd+uQeaLt5534poQW6q3jwqZjcqfBta02v6t2//fp5fHzPdzp53Pv/5i1w9HY9d3PzbLzfdGxnaeCh4xZO0yjsctzY2hlNOEoYjhSiUErPdWLlp1AogijOrFGibx2iEM6wp90IMiz9dPm2GWhpZAKmXOgvUmCJblakkEm5YIHOZFDNZZXLwX9xXqKmJ35KojhROEKrQdOEAsVBLhQwIQIjRRfagUgQvStAcyggUlpOpSkBy8ox56GCgSyjLKGKCH5bRmcCxnOC7sqoIuGXFZJ7lAQCikUac0ly1ZJodjjBiIulhqUd67MxLnQfTSBI0aGcwxhX5ssk0Cqv7ARDjDClZTQm+VVrLMK3iDMGo0k6QgyKMEtHEz0k7blZhb4r0b2s3LH4xTJLi8etSuWhc9W23WO7+6HbPLcLGW0br4zXxoHhGn3j3HhnXBpDA5lfzW/md/NH7Wftd92s11apW2ZR89IoWX33D9ODP2M=</latexit>

O

ClO

<latexit sha1_base64="pj27o1wPbPJhqC+BAlkpMIaC6Gw=">AAADvXicbVJba9swFJbjXdrslm6PezELgwTSYKXNuhXKCnvp2zpY2oJjgiwribAuRpKXZsb/ZH9s/2byJWxOJzA+5/u+c44uX5Qyqo3v/3Y67qPHT54eHHafPX/x8lXv6PWNlpnCZIYlk+ouQpowKsjMUMPIXaoI4hEjt1HypeRvfxClqRTfzTYlIUcrQZcUI2OhRe/XHK8JX9JVgIzknibpBSQ8zI+D88mZH14sgvOTEz9s0sFxnVZ/Pxzu8mHDD0v9BNYCC4xGIxh+vSppOLVoSX+quu2K/mrrbiWwkxeLXt8f+9XyHgawCfqgWdeLo87hPJY440QYzJDWAfRTE+ZIGYoZKbrzzJ4Q4QStSGBDgTjRYV5dY+G9t0jsLaWynzBehf5bkSOu9ZZHVsmRWet9rgT/xwWZWX4McyrSzBCB60HLjHlGeuWbeDFVBBu2tQHCitq9eniNFMLGvlxrSsSLdi5lYlCk2yjPmKFKbtroSqF0TfF9GzU0+VkjZcRopJDa5qnUtDQIFatRTLBUlV30OLVn41LZPpbAiOGRXqOU7M3XWWQdtbcnlBBMGGujKS2v2mKCbLDkHIk4n2OOVFLk89gOyaew2KPvW/S0aHds7Fx0rXngvlUeBjeTMfwwPv122r8cNzY6AG/BOzAAEJyBS3AFrsEMYKfjDBzoTNzPLnGZK2ppx2lq3oDWcjd/AJAvLy4=</latexit>

OH

<latexit sha1_base64="6/b4FiYjVQ6Ow78pX6L8K2M+nKY=">AAAEPnicdVPLbtNAFLUTHm14NbCExYgoUpGSyE6TNFQKqsSmK1ok0lZKTDQej5NRZjzWzJg2WF7xNWzhB/gNfoAdYsuSsfMgduFKlu4958491+NjN6REKsv6bpbKt27fubuzW7l3/8HDR3vVx+eSRwLhIeKUi0sXSkxJgIeKKIovQ4Ehcym+cOevU/7iAxaS8OCdWoTYYXAaEJ8gqDQ0qZrPxmiGmU+mI6g4AxKHAxuzhssDD3Dfl1gNrFA5cQVsxWkd9JfAYHTU7lhOHRzmGnTsL4Hm6OjAshqNhu2cntTBy2Lbi02b3U/nHPyt22ndzurB+zVvb/ilbm/DaxnnTR10txWaddD5z2LrY710SvPVWnh7s2SyV7NaVhbgZmKvkpqxirNJtbQ79jiKGA4UolDKkZ3dHhSKIIqTyjjSNwzRHE7xSKcBZFg6cfYdE1DXiAd8LvQTKJCh2ydiyKRcMFd3Mqhmssil4L+4UaT8vhOTIIwUDtBSyI8oUBykpgAeERgputAJRILoXQGaQQGR0tbJqbgsydeczxV0ZR5lEVVE8Ks8OhUwnBF0nUcVmX9cImlGiSugWMQhlyR1KAmmDQ8jLjK/ylao341xoedoAkGKGnIGQ1zQl5GrHV3YCc4xwpTm0ZCkV62xAF8hzhgMvHiMGBTzJB57WiTu2kmBvs7R3SQ/cfU7JRVtHrtolZvJebtl91qdt53acWdlox3jqfHc2Dds49A4Nk6MM2NoIPOT+dn8Yn4tfyv/KP8s/1q2lszVmSdGLsq//wCYbkB9</latexit>

O

OHN

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="mlB6hVlRuPPc3W+UK++rCk8U0jM=">AAAEJ3icbVNbb9MwFPYWLqNctsEjLxET0oamqqnSXd5267QHJoa0G2qqyXFOWit2bNkOa4nyK3iFH8Cv4Q3BI/8Ep2sRSbEU6eT7Pp/z+Rw7lIxq02r9Wlh07t1/8HDpUePxk6fPlldWn19qkSkCF0Qwoa5DrIHRFC4MNQyupQLMQwZXYXJY8lcfQWkq0nMzltDneJDSmBJsLPQhXg9Cno+KjZuVtVazNVnufOBNgzU0XWc3q85SEAmScUgNYVjrnteSpp9jZShhUDSCTIPEJMED6NkwxRx0P584LtzXFoncWCj7pcadoP/uyDHXesxDq+TYDHWdK8H/cb3MxDv9nKYyM5CSu0Jxxlwj3PL4bkQVEMPGNsBEUevVJUOsMDG2SZUqIS+q/0IkBoe6ivKMGarEbRUdKCyHlIyqqKHJpzukjBgNFVbjXApNy1nQdLAZARFqMhndlPZsXCibxxIEM7Kph1hCrb7OwpgOap5wAgQYq6KSlq22WAq3RHCO0ygPCMcqKfIgskXyjlfU6FGF7pT0EdhpKzi17t5JsGaFemPziNTeKKvU1imEYpR7Rc9rdvp5sB5I21/GgAUbNkGjEUQQ29s6mXmuQ5ZBkZ+cn74t8nbr0Ot2i5pCQTQTdDv+se/XBZKmyUxx1PW399t1xUABpDOJt79/3JlPkinJ/jrZ3tnaPZhzMrZNtaOemTk68Nu79kT27Xj1lzIfXLab3lbTf++v7W1OX9ESeoleoXXkoW20h07QGbpABHH0GX1BX51vznfnh/PzTrq4MN3zAlWW8/sP8SRqYw==</latexit>

f(x)
<latexit sha1_base64="MfVe6iG2OFq2STxGpqU4PhfCFN4=">AAAELHicbVPLbtQwFHUbHmV4tbBkE1EhtaiMJqNMH7u+puqCiiL1JU2mlePczFhxYst2aKdW/oMtfABfwwYhtnwHznQGkQyWIt2cc3zv8b12KBhVutX6MTfv3Lv/4OHCo8bjJ0+fPV9cenGmeC4JnBLOuLwIsQJGMzjVVDO4EBJwGjI4D5O9kj//BFJRnp3okYB+igcZjSnB2kKX8aV55xUrQZia22L1anG51WyNlzsbeJNgGU3W8dWSsxBEnOQpZJowrFTPawndN1hqShgUjSBXIDBJ8AB6NsxwCqpvxrYL941FIjfm0n6ZdsfovzsMTpUapaFVplgPVZ0rwf9xvVzHm31DM5FryMhdoThnruZu2QM3ohKIZiMbYCKp9eqSIZaYaNupSpUwLar/nCcah6qKpjnTVPLrKjqQWAwpuamimia3d0gZMRpKLEdGcEXLgdBssBYB4XI8HtUU9mwplzaPJQhmZE0NsYBafZWHMR3UPOEECDBWRQUtW22xDK4JT1OcRSYgKZZJYYLIFjEdr6jRNxW6U9L7YKct4ci6+yDAmuXyrc3DM3utrFJZpxDyG+MVPa/Z6ZtgJRC2v4wBC1ZtgkYjiCC2V3Y8c6NClkNhDk+O3hem3drzut2ippAQTQXdjn/g+3WBoFkyVex3/Y2ddl0xkADZVOLt7Bx0ZpPkUrC/TjY217d2Z5yMbFPtqKdm9nf99pY9kX07Xv2lzAZn7aa33vQ/+svba5NXtIBeoddoBXloA22jQ3SMThFBEn1GX9BX55vz3fnp/LqTzs9N9rxEleX8/gMqj2xL</latexit>

f�1(z)
Flow

(1) Auto-regressive models
Node ordering

<latexit sha1_base64="mXTmQYmt8DdZVZKj1IcBixWXqdA=">AAAEdnicdVPfa9swELbbbGuzH222x8EQC2YdJMFOkzQrZBT20rd20LSFJARZlhNhyTKSvDYz/sv2l+xxr9s/sMfJibPGbntguPvu7ruT/MmNKJHKtn+aW9uVJ0+f7exWn794+Wpvv/b6UvJYIDxEnHJx7UKJKQnxUBFF8XUkMGQuxVdu8CXLX33DQhIeXqhFhCcMzkLiEwSVhqY182KM5pj5ZDaCijMgcTRwMGu4PPQA932J1cCO1CSpgg07s0B/BQxGx07bnljgqFCg7SAHmqPjnt1oNJzJ2akFPpXLPlbXVU4/4+n+j9udLO48wqsLDu07Xsd+mHgwXRMf3g1aLtzODzDN9tOxs0nQtEDvsQOtevRw3dT8vF54c3A63a/bLXtp4L7j5E7dyO18WtvaHXscxQyHClEo5chZ3joUiiCK0+o41n8GogDO8Ei7IWRYTpLl/0+BpREP+FzoL1RgiW52JJBJuWCurmRQzWU5l4EP5Uax8vuThIRRrHCIVoP8mALFQSYm4BGBkaIL7UAkiN4VoDkUECktucIUl6XFmPNAQVcWURZTRQS/KaIzAaM5QbdFVJHg+wrJPEpcAcUiibgkmbJJOGt4GHGx1LlsRfpsjAvNoxMIUtSQcxjh0nwZu/ollHaCAUaY0iIakeyqNRbiG8QZg6GXjBGDIkiTsaeHJF0nLaVvC+luWmTMn2Fa1eJxylK571y2W06v1fnaqZ90chntGG+N98aB4RhHxolxapwbQwOZP8xf5m/zz/bfyruKVfmwKt0y8543RsEq9j8se0bL</latexit>

O

OH

OH

<latexit sha1_base64="DjHHIEfQP78NmW+hVLijld8VWm4=">AAAEZHicdVPdatswFLbbbGuzbmtWdjUYYiXQQRqs/DTtIKNsN71rB0tbSEyQZTkRkSwjyWsz4wfa0+x2fYE9x+TYa2u3O2A45zs/35H02YsYVdpxbuy19dqTp882NuvPt168fLXdeH2uRCwxGWHBhLz0kCKMhmSkqWbkMpIEcY+RC2/xJctffCdSURF+08uIuBzNQhpQjLSBpg378wTPCQ/obIy04ECRaAgJb3ki9IEIAkX00Im0m9TBPWsCmMf744+dgeOeNkHnDoCO2wTdVTyc5gVN0CsNMLZ329DtOq1WC7qnJ2YurNZ9qAzu3w6G/Sw+KBpMwVEWD/5D9K+rmxUd3mH5Agbb/1Qs/Sh5TnaUx8N8GXNs6NTT6fau03ZWBh46sHB2rcLOpo21zYkvcMxJqDFDSo3h6o6R1BQzktYnsXkHhBdoRsbGDREnyk1Wr52CpkF8EAhpvlCDFXq/I0FcqSX3TCVHeq6quQx8LDeOdXDoJjSMYk1CnBMFMQNagEw6wKeSYM2WxkFYUrMrwHMkEdZGYCUWj6flWIiFRp4qozxmmkpxVUZnEkVziq/LqKaLHzmSeYx6EsllEglFMx3TcNbyCRZypWrVjszZuJBmjklgxHBLzVFEKvwq9ozuKzuhBcGEsTIa0eyqDRaSKyw4R6GfTDBHcpEmE9+QJH2YVtLXpXQ/LU8sfrq0bsQDq1J56Jx32vCg3fva2z3uFTLasN5a7609C1oD69g6sc6skYXtn/Yv+7d9s/6ntlXbqb3JS9fsomfHKlnt3V/H7UVE</latexit>

O

OH

O
<latexit sha1_base64="0SQMO8+iptnaPLzdwXDASynP5po=">AAAEjXicbZNNb9NAEIadEKANH23hyGVFFQmkNvKm+WrVVpU4wKkqEv2QElOt1+tk5V2vtbumDZb/JDf+CUfGTmjqhJEszfvMeN+xPfYTwY113d+1+pPG02fPNzabL16+er21vfPmyqhUU3ZJlVD6xieGCR6zS8utYDeJZkT6gl370aeifv2DacNV/M3OEuZJMol5yCmxgG53atGYTpkM+WRErJLIsOQEM7nnqzhAKgwNsyduYr2siR5FC+G53h8ddfpd77yFOkuAXa+FDpZ62AHdfdAHvS7o3uJAAP0+6H7FAOLDEkAPPhh642RKYhgyO89baP/0n+UyPs7B8RH0F56DUp98B89SD5eeoGHowzkoOgZFA3abS8MS4Icj8GEJ1kyrc3Z6RRcMN1gfLr/d3nXbbhloPcGLZNdZxMXtTn1zHCiaShZbKogxI1x+DKItp4LlzXEKH4zQiEzYCNKYSGa8rFyLHLWABChUGq7YopI+viMj0piZ9KFTEjs1q7UC/q82Sm049DIeJ6llMZ0bhalAVqFix1DANaNWzCAhVHOYFdEp0YRa2MSKiy/zqlYqssQ3VSpTYblWd1U60SSZcnpfpZZHP+ekyAT3NdGzLFGGFwvP48lewKjS5fqbdgLPJpWGc6BAiaB7ZkoStuJvUh9+kJWZSMQoE6JKE168amAxu6NKShIH2ZhKoqM8GwdgkvVwvlK+r5R7efXExd+ZN2F58OqqrCdXnTbut7tfu7tn3cUabTjvnPfOBwc7A+fM+eJcOJcOrf2q/anX6vXGVqPXOG6czlvrtcU9b51KND7/BVWeTbI=</latexit>

N
N

<latexit sha1_base64="EfmTdxO8YKNj1ABlo7G2Soy0PEQ=">AAAEPXicbVPLbhMxFHUbHiW8WlgipBEVUotKlImSPnZ9peqCiiL1JWWiyOO5Sayxx8b20ARrVnwNW/gAvoMPYIfYssWTJoiZYGmk63OO7z2+dxxKRrWp178vLFZu3b5zd+le9f6Dh48eL688udAiVQTOiWBCXYVYA6MJnBtqGFxJBZiHDC7D+CDnLz+A0lQkZ2YsocvxIKF9SrBxUG/5+fu1IOR2lPWMF3AaedOdNa/9bL23vFqv1SfLmw/8abCKpuu0t1JZCiJBUg6JIQxr3fHr0nQtVoYSBlk1SDVITGI8gI4LE8xBd+3kHpn30iGR1xfKfYnxJui/JyzmWo956JQcm6Euczn4P66Tmv5219JEpgYSclOonzLPCC9vihdRBcSwsQswUdR59cgQK0yMa12hSsiz4l6I2OBQF1GeMkOVuC6iA4XlkJJRETU0/niD5BGjocJqbKXQNJ8QTQYbERChJvPSNenuxoVyeRxBMCMbeogllOrrNOzTQckTjoEAY0VU0rzVDkvgmgjOcRLZgHCs4swGkStiW35WokcFupXTh+CmreDEuXsrwZkV6pXLIxL3nzmldk4hFCPrZx2/1uraYC2Qrr+MAQvWXYJqNYig7/7hycytDlkKmT0+O3mT2Ub9wG+3s5JCQTQTtFvNo2azLJA0iWeKw3Zza69RVgwUQDKT+Ht7R635JKmS7K+Tre3Nnf05J2PXVDfqmZnD/WZjx93IvR2//FLmg4tGzd+sNd81V3c3pq9oCT1DL9Aa8tEW2kXH6BSdI4I+oc/oC/pa+Vb5UflZ+XUjXVyYnnmKCqvy+w8rm3LU</latexit>

q(xt | xt�1)

<latexit sha1_base64="1r4qz7hhJ4RPyNwdl/AwhYmjBTs=">AAAERnicbVPLbhMxFHWbAiW8WliyGVGBWlSiTDTpY9dXqi6oKFJfUiaKPJ6bxBp7bNkemmDNH/A1bOED+AV+gh1ii5MmFTPB0kh3zjm+9/heO5KMalOv/1xYrCzdu/9g+WH10eMnT5+trD6/1CJTBC6IYEJdR1gDoylcGGoYXEsFmEcMrqLkcMxffQKlqUjPzUhCh+N+SnuUYOOg7sob2Q3NAAxeDyNuh3nXmnd+7oWcxt4dkm90V9bqtfpkefOBPw3W0HSddVcry2EsSMYhNYRhrdt+XZqOxcpQwiCvhpkGiUmC+9B2YYo56I6dHCj3Xjsk9npCuS813gT9d4fFXOsRj5ySYzPQZW4M/o9rZ6a307E0lZmBlNwW6mXMM8Ibd8eLqQJi2MgFmCjqvHpkgBUmxvWwUCXiefFfiMTgSBdRnjFDlbgpon2F5YCSYRE1NPl8i4wjRiOF1chKoel4VDTtb8ZAhJoMTtekOxsXyuVxBMGMbOoBllCqr7OoR/slTzgBAowVUUnHrXZYCjdEcI7T2IaEY5XkNoxdEdv08xI9LNDNMX0EbtoKTp27DxKcWaHeujwidRfOKbVzCpEYWj9v+7Vmx4broXT9ZQxYuOESVKthDD13mScztzpiGeT25Pz0fW4b9UO/1cpLCgXxTNBqBsdBUBZImiYzxVEr2N5vlBV9BZDOJP7+/nFzPkmmJLtzsr2ztXsw52TkmupGPTNzdBA0dt2J3Nvxyy9lPrhs1PytWvAxWNvbnL6iZfQSvULryEfbaA+doDN0gQj6gr6ib+h75UflV+V35c+tdHFhuucFKqwl9BceC3X3</latexit>

p✓(xt�1 | xt)

Figure 2: A summary of graph generative models for deep graph generation, including (1) auto-
regressive models, (2) variational autoencoders, (3) normalizing flows, (4) generative adversarial
networks, and (5) diffusion models.

• Graph structure learning [22, 23] simultaneously learns an optimized graph structure along
with representations for downstream tasks. Unlike graph generation that aims to generate new
graphs, the purpose of graph structure learning is to improve the given noisy or incomplete
graphs.

• Generative sampling [24, 25, 26] learns to generate subsets of nodes and edges from a large
graph. As most graph generative models do not scale to large single-graph datasets such as
citation networks, graph generative sampling could serve as an alternative approach to generate
large-scale graphs by sampling subgraphs from a large graph and reconstructing a new graph.

• Set generation [27, 28] seeks to generate set objects, such as point clouds or 3D molecules,
which is similar to graph generation in that graphs are also set objects. In this survey, we only
focus on graph generation whose objective concerns with generation of both the nodes and edges
matrices, whereas set generation typically does not consider edge features. Nevertheless, we
recognize that several set generation methods share significant similarities with graph generation.

3 Algorithm Taxonomy

For deep graph generation, we present an encoder–sampler–decoder pipeline, as shown in Figure 1,
to characterize most existing graph generative models in a unified framework. Here, the observed
graphs are first mapped into a stochastic low-dimensional latent space, with latent representations
following a stochastic distribution. A random sample is drawn from that distribution and then passed
through a decoder to restore graph structures, which are typically represented in an adjacency matrix
as well as feature matrices. Under this framework, we organize various methods around three key
components:

The encoder. The encoding function f⇥(z | G) represent discrete graph objects as dense, continu-
ous vectors. To ensure the learned latent space is meaningful for generation, we employ probabilistic
generative models (e.g., variational graph neural networks) as the encoder. Formally, the encoder
function f⇥ outputs the parameters of a stochastic distribution following a prior distribution p(z).

The sampler. Consequently, the graph generation model samples latent representations from the
learned distribution z ⇠ p(z). In graph generation, there are two sampling strategies: random
sampling and controllable sampling. Random sampling refers to randomly sampling latent codes
from the learned distribution. It is also called distribution learning in some literature [29]. In contrast,
controllable sampling aims to sample the latent code in an ultimate attempt to generate new graphs
with desired properties. In practice, controllable sampling usually depends on different types of deep
generative models and requires an additional optimization term beyond random generation.

The decoder. After receiving the latent representations sampled from the learned distribution, the
decoder restores them to graph structures. Compared to the encoder, the decoder involved in the

3

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,

Encoder Decoder

(a) Variational AutoEncoders

Discriminator

True

False
Generator

(b) Generative Adversarial Networks (GAN)

Flow Inverse

(c) Normalizing Flows

... ...

Add noise

Denoise Reverse:

Forward:

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,

Encoder Decoder

(a) Variational AutoEncoders

Discriminator

True

False
Generator

(b) Generative Adversarial Networks (GAN)

Flow Inverse

(c) Normalizing Flows

... ...

Add noise

Denoise Reverse:

Forward:

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

tion [De Cao and Kipf, 2018]. Although these deep gener-
ative methods have achieved promising performance, most of
them still have several limitations. For example, VAE ap-
proaches struggle with the estimation of posterior to gener-
ate realistic large-scale graphs and require expensive com-
putation to achieve permutation invariance because of the
likelihood-based method [Bond-Taylor et al., 2021]. Most
GAN-based methods are more prone to mode collapse with
graph-structured data and require additional computation to
train a discriminator [De Cao and Kipf, 2018; Wang et al.,
2018]. The flow-based generative models are hard to fully
learn the structural information of graphs because of the con-
straints on the specialized architectures [Cornish et al., 2020].
Thus, it is desirable to have a novel generative paradigm for
deep generation techniques on graphs.

In recent years, denoising diffusion models have become
an emerging generative paradigm to enhance generative ca-
pabilities in the image domain [Cao et al., 2022; Yang et

al., 2022]. More specifically, inspired by the theory of
non-equilibrium thermodynamics, the diffusion generative
paradigm can be modelled as Markov chains trained with
variational inference [Yang et al., 2022], consisting of two
main stages, namely, a forward diffusion and a reverse diffu-
sion. The main idea is that they first develop a noise model to
perturb the original input data by adding noise (i.e., generally
Gaussian noise) and then train a learnable reverse process to
recover the original input data from the noise. Enhanced by
the solid theoretical foundation, the probabilistic parameters
of the diffusion models are easy-to-tractable, making tremen-
dous success in a broad range of tasks [Cao et al., 2022;
Yang et al., 2022] such as image generation, text-to-image
translation, molecular graph modeling.

Recent surveys on deep diffusion models have focused
on the image domain [Cao et al., 2022; Yang et al., 2022;
Croitoru et al., 2022]. Therefore, in this survey, we pro-
vide a comprehensive overview of the advanced techniques
of deep graph diffusion models. More specifically, we first
briefly introduce the basic ideas of the deep generative mod-
els on graphs along with three main paradigms in diffusion
models. Then we summarize the representative methods for
adapting generative diffusion methods on graphs. After that,
we systematically present two key applications of diffusion
models, i.e., molecule generation and protein modeling. At
last, we discuss the future research directions for diffusion
models on graphs. To the best of our knowledge, this survey
is the very first to summarize the literature in this novel and
fast-developing research area.

2 Preliminaries
In this section, we briefly introduce some related work about
deep generative models on graphs and detail three represen-
tative diffusion frameworks (i.e., SMLD, DDPM, and SGM).
The general architecture of these deep generative models on
graphs is illustrated in Figure 1. Next, we first introduce some
key notations.
Notations. In general, a graph is represented as G=(X,A),
consisting of N nodes. A 2 RN⇥N is the adjacency matrix,
where Aij = 1 when node vi and node vj are connected,

Encoder Decoder

(a) Variational AutoEncoders

Discriminator

True

False
Generator

(b) Generative Adversarial Networks (GAN)

Flow Inverse

(c) Normalizing Flows

... ...

Add noise

Denoise Reverse:

Forward:

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

and 0 otherwise. X2RN⇥d denotes the node feature with di-
mension d. Under diffusion context, G0 refers to the original
input graph, while Gt refers to the noise graph at the t time
step.

2.1 Deep Generative Models on Graphs
Variational Autoencoders (VAEs). As the very first deep
generative model, variational autoencoders have been suc-
cessfully applied to graphs, where VAE aims to train a prob-
abilistic graph encoder q�(z|G) to map the graph space to
a low-dimensional continuous embedding z, and a graph de-
coder p✓(G|z) to reconstruct new data given the sampling
from z [Kipf and Welling, 2016; Simonovsky and Ko-
modakis, 2018].
Generative Adversarial Networks (GAN). GAN is to im-
plicitly learn the graph data distribution with the min-max
game theory [Maziarka et al., 2020; Wang et al., 2018;
Fan et al., 2020b; Wang et al., 2020] with two deep neural
networks: generator fG and discriminator fD. Specifically,
the generator attempts to learn the graph distribution and gen-
erate new graphs, while the discriminator tries to distinguish
the real graph from the generated graph. Due to the discrete
nature of graphs, most GAN-based methods are optimized by
reinforcement learning techniques.
Normalizing Flows. The normalizing flow leverages a se-
quence of invertible functions f(x) to map the graph sam-
ples (i.e., adjacency matrices and/or edge features) to latent
variables z and learns the graph distribution by tracking the
change of density with Jacobian matrix [Liu et al., 2019a].
The inverse function f�1(z) yields new samples from latent
variables by reversing mapping f(x). The function f spec-
ifies an expressive bijective map which supports a tractable
computation of the Jacobian determinant [Kobyzev et al.,
2020]. Generally, the training process would estimate the log-
likelihoods of each graph sample and update the parameter of

Take home messages
! Implicit models (GANs) generate high-quality, realistic samples but are

hard to train and prone to mode collapse

! Tractable models (Autoregressive) offer exact likelihoods and
interpretability but suffer from slow sampling due to their sequential
nature; Errors are accumulated over iterations

! Approximate models (VAEs) enable stable training via a likelihood lower
bound but produce blurrier samples

! Diffusion models combine benefits of others by transforming noise into
data through a reverse process, achieving high fidelity but at the cost of
slower sampling than VAEs and GANs; faster than autoregressive models

33

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

References

34

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

1. Network Science, by Albert-László Barabási, 2016 - Chapters
4-5

2. CS236 Deep Generative Models - Course notes - https://
deepgenerativemodels.github.io/notes/index.html

2. CS 6785 - Deep Generative Models - https://kuleshov-
group.github.io/dgm-website/

3. Denoising Diffusion Models: A Generative Learning Big Bang
https://cvpr.thecvf.com/virtual/2023/tutorial/18546

4. Cao, Hanqun, et al. "A survey on generative diffusion
models." IEEE Transactions on Knowledge and Data
Engineering (2024)

https://deepgenerativemodels.github.io/notes/index.html
https://deepgenerativemodels.github.io/notes/index.html
https://kuleshov-group.github.io/dgm-website/
https://kuleshov-group.github.io/dgm-website/
https://cvpr.thecvf.com/virtual/2023/tutorial/18546
https://deepgenerativemodels.github.io/notes/index.html
https://deepgenerativemodels.github.io/notes/index.html
https://kuleshov-group.github.io/dgm-website/
https://kuleshov-group.github.io/dgm-website/
https://cvpr.thecvf.com/virtual/2023/tutorial/18546

References: tutorials & surveys

35

Network Machine Learning - EE452

Dr Dorina Thanou

Prof. Pascal Frossard

1. Tutorial on Deep Generative Models. A. Grover and S. Ermon.
International Joint Conference on Artificial Intelligence, 2018

2. Tutorial on Generative Adversarial Networks. Computer Vision
and Pattern Recognition, 2018

3. Tutorial on Deep Generative Models. S. Mohamed and D.
Rezende. Uncertainty in Artificial Intelligence, 2017

4. Tutorial on Generative Adversarial Networks. I. Goodfellow.
Neural Information Processing Systems, 2016

5. Learning deep generative models. R. Salakhutdinov. Annual
Review of Statistics and Its Application, 2015

https://ermongroup.github.io/generative-models/
https://sites.google.com/view/cvpr2018tutorialongans/
https://www.youtube.com/watch?v=JrO5fSskISY
https://www.youtube.com/watch?v=AJVyzd0rqdc
https://www.cs.cmu.edu/~rsalakhu/papers/annrev.pdf
https://ermongroup.github.io/generative-models/
https://sites.google.com/view/cvpr2018tutorialongans/
https://www.youtube.com/watch?v=JrO5fSskISY
https://www.youtube.com/watch?v=AJVyzd0rqdc
https://www.cs.cmu.edu/~rsalakhu/papers/annrev.pdf

